Contents

- Basics .. 300
- USP listing ... 302
- Additional information for GC columns ... 303
- Separation properties of OPTIMA® phases .. 305
- Summary of MN phases for GC .. 306
- OPTIMA® · nonpolar capillary columns ... 310
- OPTIMA® · weakly polar capillary columns .. 314
- OPTIMA® · δ · phases with autoselectivity .. 318
- OPTIMA® · medium polar capillary columns ... 321
- OPTIMA® · polar capillary columns .. 328
- PERMABOND® capillary columns .. 336
- Special GC columns overview ... 339
- Capillary columns for Fast GC ... 340
- Capillary columns for enantiomer separation ... 342
- Capillary columns for biodiesel analysis ... 346
- Capillary columns for triglyceride analysis ... 348
- Capillary columns for high temperature GC ... 349
- Capillary columns for amine separation .. 350
- Capillary columns for hydrocarbons ... 352
- Capillary columns for silane · DEG ... 354
- Fused silica capillaries ... 355
- Reagents / methods for derivatization .. 357
 - Reagents / methods for acylation ... 359
 - Reagents / methods for alkylation / methylation ... 361
 - Reagents / methods for silylation .. 362
- Derivatization procedures ... 367
- Test mixtures for GC capillary columns ... 368
- Ferrules for capillary columns .. 370
- Septa for capillary column ... 371
- Accessories for capillary columns ... 372
- General accessories .. 373
The GC system

Configuration of a gas chromatograph
1. Gas supply: carrier gas and - if necessary - detector gases e.g., for FID detector
2. Sample injector: During direct injection, the sample is applied to the column without touching any other parts made from glass or metal (on-column injection). During indirect injection, the sample is brought into an evaporator and is then transferred onto the column either completely, or partially (split technique). Both techniques allow working at low temperatures, high temperatures and the use of temperature programming.
3. Capillary column: the heart of the GC system
4. Temperature-controlled oven
5. Detector: indicates a substance by generating an electrical signal (response). Some detectors are specific for certain classes of substances or for certain elements (e.g., P, N).
6. Data station for configuration of a gas chromatograph

The separation process
Chromatographic separation is achieved through continuous distribution of each sample component between the mobile and the stationary phase:
In GC, the mobile phase is always a gas, mostly either He, N₂ or H₂.
The stationary phase is often a viscous, gum-like liquid adhered to the inner wall of a capillary column (WCOT = Wall Coated Open Tubular).

Transport of the components occurs exclusively in the mobile phase, while separation only takes place in the stationary phase. The quality of a separation (resolution) depends on the residence time of the components within the stationary phase and on the rate of interactions. The type of interaction between component and phase (selectivity) is determined by the functional groups of the stationary phase. The polarity of the phase is a function of its substituents.

The chromatogram
A chromatogram consists of a base line and a number of peaks. The area of a peak allows quantitative determinations:

A: starting point of a chromatogram = time of injection of a dissolved solute
A component can be identified by its retention time (qualitative determination):

\[t_{Ri} = t_0 + t'_{Ri} \]

\(t_0 \): dead time = residence time of a solute in the mobile phase (time required by a component to migrate through the chromatographic system without any interaction with the stationary phase)
\(t_{Ri} \): retention time = time interval between peak i and the point of injection
\(t'_{Ri} \): net retention time = difference between total retention time and dead time \(t_0 \). It indicates how long a substance stays in the stationary phase.

Other terms characterizing a separation:
\(k' \): retention factor: a measure for the position of a sample peak in the chromatogram. The retention factor is specific for a given compound and constant under constant conditions.
\[k' = \frac{t_{Ri} - t_0}{t_0} \]

\(\alpha \): relative retention, also called separation factor or selectivity coefficient, is the ratio of two capacity factors. The reference substance is always in the denominator.
\[\alpha = \frac{k'_2}{k'_1} \]
The relative retention does not provide any information on the quality of a separation. For equal values of α two very broad peaks may overlap (as shown in a), or may be completely resolved (as in b), if they are accordingly narrow.

R: resolution: a measure for the quality of a separation, taking $(w_{1/2})$ into account according to:

$$R = 1.18 \cdot \frac{t_{R2} - t_{R1}}{(w_{1/2})}$$

N: number of theoretical plates: characterizes the quality of a column (should be determined for $k' > 5$). The height equivalent to a theoretical plate (h, HETP) is calculated by dividing the length L of the column by the number of theoretical plates N. The smaller this value the more efficient the column.

$$N = 5.54 \cdot \frac{t_{Ri}}{(w_{1/2})}$$

$$h = HETP = \frac{L}{N}$$

The Golay equation shows how the plate height h depends on the flow velocity u:

B: molecular axial diffusion; B is a function of the diffusion coefficient of the component in the respective carrier gas

C: resistance to mass transfer

In practice often higher velocities than $u_{optimal}$ are chosen, if separation efficiency is sufficient. Higher carrier velocities mean shorter retention times.

Parameters characterizing a capillary column

<table>
<thead>
<tr>
<th>OPTIMA® 5</th>
<th>1.0 μm film</th>
<th>30 m x 0.32 mm ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

A. Stationary phase

Different chemical structures of stationary phases are responsible for the type of interaction (selectivity) between the phase and the analytes. The stationary phase also limits the temperature range for chromatography. For a detailed summary of MN phases for GC please see the following chapter.

B. Film thickness

MACHEREY-NAGEL offers ranges from 0.1 to 5.0 μm. The standard film thickness is 0.25 μm. Thin films (0.1–0.2 μm) are very well suited for high-boiling, temperature-sensitive or almost contemporaneously eluting substances.

Increasing the film thickness will increase the capacity, the retention for low-boiling substances and the inertness of the column. This is especially helpful for samples with a broad range of concentrations, or the separation of volatile polar substances.

A better coverage of the column wall by a thicker film and a reduced column surface due to a shorter column have a positive impact on the separation of very active substrates, that may cause noticeable tailing when they come in contact with non-coated spots of the column wall.

Thick films, however, always mean more stationary phase in the column, hence increased column bleeding. Therefore, maximum operating temperatures for thick-film columns are reduced. In addition, thick-film columns may have a lesser separating capacity.

C. Column length

The separating efficiency (better the number of plates N) of a column is directly proportional to its length. Most routine separations are carried out on 25 or 30 m columns, while more complex samples may require 50 or 60 m. 10 m columns are common for Fast GC (see page 340).

D. Inner diameter (ID)

The lower the ID, the higher is the theoretically possible number of plates per meter.

- 0.1–0.2 mm ID: for high resolution and short retention times at low carrier gas flow
- 0.25 mm ID: for analysis of complex mixtures
- 0.32 mm ID: for routine analysis with short retention times, but increased capacity
- 0.53 mm ID: for rapid separations with inert surface and highest capacity
<table>
<thead>
<tr>
<th>Code</th>
<th>Specifications</th>
<th>MN GC phases</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP G1 / G2</td>
<td>dimethylpolysiloxane oil</td>
<td>OPTIMA® 1</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1 MS</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1 MS Accent</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1-TG</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® SE-30</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® P-100</td>
<td>352</td>
</tr>
<tr>
<td>USP G3</td>
<td>50% phenyl - 50% dimethylpolysiloxane</td>
<td>OPTIMA® 17</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 17 MS</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 17-TG</td>
<td>348</td>
</tr>
<tr>
<td>USP G6</td>
<td>trifluoropropylmethylpolysiloxane</td>
<td>OPTIMA® 210</td>
<td>329</td>
</tr>
<tr>
<td>USP G7</td>
<td>50% 3-cyanopropyl - 50% phenylmethylpolysiloxane</td>
<td>OPTIMA® 225</td>
<td>330</td>
</tr>
<tr>
<td>USP G16</td>
<td>polyethylene glycol (average molecular weight – 15,000); high molecular weight compound of polyethylene glycol and diepoxide</td>
<td>OPTIMA® WAX</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® WAXplus®</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® CW 20 M</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® CW 20 M-DEG</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS-CW 20 M-AM®</td>
<td>351</td>
</tr>
<tr>
<td>USP G19</td>
<td>25% phenyl – 25% cyanopropyl – 50% dimethylpolysiloxane</td>
<td>OPTIMA® 225</td>
<td>330</td>
</tr>
<tr>
<td>USP G25</td>
<td>high molecular weight compound of polyethylene glycol and diepoxide, which is esterified with terephthalic acid</td>
<td>OPTIMA® FFAP</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® FFAPplus®</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® FFAP</td>
<td>338</td>
</tr>
<tr>
<td>USP G27</td>
<td>5% phenyl – 95% dimethylpolysiloxane</td>
<td>OPTIMA® 5</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 Amine</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 HT</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 MS</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 MS Accent</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® SE-52</td>
<td>336</td>
</tr>
<tr>
<td>USP G28</td>
<td>25% phenyl – 75% dimethylpolysiloxane</td>
<td>OPTIMA® 35 MS</td>
<td>326</td>
</tr>
<tr>
<td>USP G32</td>
<td>20% phenylmethyl – 80% dimethylpolysiloxane</td>
<td>OPTIMA® 35 MS</td>
<td>326</td>
</tr>
<tr>
<td>USP G35</td>
<td>high molecular weight compound of polyethylene glycol and diepoxide, which is esterified with nitroterephthalic acid</td>
<td>OPTIMA® FFAP</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® FFAPplus®</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® FFAP</td>
<td>338</td>
</tr>
<tr>
<td>USP G36</td>
<td>1% vinyl – 5% phenylmethylpolysiloxane</td>
<td>OPTIMA® 5</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 Amine</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 HT</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 MS</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 5 MS Accent</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® SE-54 HKW</td>
<td>352</td>
</tr>
<tr>
<td>USP G38</td>
<td>dimethylpolysiloxane oil</td>
<td>OPTIMA® 1</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1 MS</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1 MS Accent</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1-TG</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® SE-30</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PERMABOND® P-100</td>
<td>352</td>
</tr>
<tr>
<td>USP G42</td>
<td>35% phenyl – 65% dimethylpolysiloxane</td>
<td>OPTIMA® 35 MS</td>
<td>326</td>
</tr>
<tr>
<td>USP G43</td>
<td>6% cyanopropylphenyl – 94% dimethylpolysiloxane</td>
<td>OPTIMA® 1301</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1301 MS</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 624</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 624 LB</td>
<td>323</td>
</tr>
<tr>
<td>USP G46</td>
<td>14% cyanopropylphenyl – 86% dimethylpolysiloxane</td>
<td>OPTIMA® 1701</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPTIMA® 1701 MS</td>
<td>325</td>
</tr>
<tr>
<td>USP G49</td>
<td>proprietary derivatized phenyl groups on a polysiloxane backbone</td>
<td>OPTIMA® 5-3</td>
<td>319</td>
</tr>
</tbody>
</table>
Additional information for GC columns

Scope of delivery

Each column is individually tested and supplied with test certificate and test chromatogram, but without fittings or ferrules. Columns have fused ends or are sealed with septa, to protect them from atmospheric oxygen. Furthermore an instruction leaflet is enclosed.

GC cages

The standard size of a GC cage is 7 inches. On request, all columns can be supplied on a 5 inch (13 cm) cage e.g., for the Agilent GC 6850. To order, please add an E at the end of the REF number (e.g., 726470.30E)

Integrated guard column

To prolong column life, even at highly contaminated or matrix-containing samples, MN offers the option to add an integrated guard column. All capillary columns are available with a 10 m guard column with respective deactivation. To order, please add V1 at the end of the REF number (e.g., 726600.30V1). Guard column combinations with other lengths, IDs or different deactivation are available on request.
Purpose of derivatization

- Improved volatility, better thermal stability or a lower limit of detection in gas chromatography
- Prerequisite: quantitative, rapid and reproducible formation of only one derivative
- Halogen atoms inserted by derivatization (e.g., trifluoroacetates) for specific detection (ECD) with the advantage of high sensitivity
- Influence of elution orders and fragmentation patterns in MS by a specific derivatization
- We provide reagents for
 - Silylation
 - Alkylation (methylation)
 - Acylation
- For 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also as screw neck vial
- Product range from page 357 onwards
Separation properties of OPTIMA® phases

Peaks:
1. Undecane
2. Dodecane
3. Octanol
4. Dimethylaniline
5. Decylamine
6. Methyl decanoate
7. Methyl undecanoate
8. Henicosane
9. Docosane
10. Tricosane

All columns:
- 0.25 μm film, 30 m x 0.25 mm ID
- MN OPTIMA® test mixture (REF 722316)
- 1.0 μL, split 15 mL/min
- 0.80 bar He
- 80 °C T_{max} (isothermal), 8 °C/min (20 min T_{max})
- FID 260–280 °C
Overview of OPTIMA® MN phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Composition</th>
<th>Page</th>
<th>Relative polarity</th>
<th>Maximum temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMA® 1</td>
<td></td>
<td>310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 1 MS</td>
<td>100 % dimethylpolysiloxane</td>
<td>312</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 1 MS Accent</td>
<td></td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 5</td>
<td>5 % phenyl – 95 % methylpolysiloxane</td>
<td>314</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 5 MS</td>
<td>5 % diphenyl – 95 % dimethylpolysiloxane</td>
<td>315</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 5 MS Accent</td>
<td>silarylene phase with selectivity similar to 5 % diphenyl – 95 % dimethylpolysiloxane</td>
<td>316</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® XLB</td>
<td>silarylene phase like above, optimized silarylene content for low bleeding</td>
<td>317</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 5-3</td>
<td>phase with autosel ectivity</td>
<td>319</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 5-6</td>
<td>phase with autosel ectivity</td>
<td>320</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 1301</td>
<td>6 % cyanopropylphenyl – 94 % dimethylpolysiloxane</td>
<td>321</td>
<td></td>
<td>300 / 320 °C</td>
</tr>
<tr>
<td>OPTIMA® 1301 MS</td>
<td>silarylene phase with low bleeding: polarity similar to 6 % cyanopropylphenyl – 94 % dimethylpolysiloxane</td>
<td>322</td>
<td></td>
<td>300 / 320 °C</td>
</tr>
<tr>
<td>OPTIMA® 624</td>
<td>6 % cyanopropylphenyl – 94 % dimethylpolysiloxane</td>
<td>323</td>
<td></td>
<td>280 / 300 °C</td>
</tr>
<tr>
<td>OPTIMA® 624 LB</td>
<td>like above, phase with low bleeding</td>
<td>323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 1701</td>
<td>14 % cyanopropylphenyl – 86 % dimethylpolysiloxane</td>
<td>324</td>
<td></td>
<td>280 / 300 °C</td>
</tr>
<tr>
<td>OPTIMA® 1701 MS</td>
<td>silarylene phase with low bleeding: polarity similar to 14 % cyanopropylphenyl – 86 % dimethylpolysiloxane</td>
<td>325</td>
<td></td>
<td>280 / 300 °C</td>
</tr>
</tbody>
</table>

1 = nonpolar, 2 = polar

2 First temperature (long term temperature) for isothermal operation, second value for the max. temperature (short term temperature) in a temperature program. Please note that for columns with 0.53 mm ID and for columns with thick layers.

3 Phases which provide a similar selectivity based on chemical and physical properties

4 See description on page 318

GC columns for special separations can be found from page 339 onwards.
Summary of MN phases for GC

<table>
<thead>
<tr>
<th>Structure</th>
<th>USP</th>
<th>Similar phases</th>
<th>Temperature limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1/G2/G38</td>
<td>PERMABOND® SE-30, OV-1, DB-1, SE-30, HP-1, SPB™-1, CP-Sil 5 CB, Rtx®-1, 007-1, BP1, MDN-1, AT™-1, ZB-1, OV-101</td>
<td>5% diphenyl – 95% dimethylpolysiloxane</td>
</tr>
<tr>
<td></td>
<td>G27/G36</td>
<td>PERMABOND® SE-52, SE-54, SE-52, HP-5, SPB™-5, CP-Sil 8, Rtx®-5, 007-5, BP5, MDN-5, AT™-5, ZB-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G27/G36</td>
<td>DB-5, DB-5MS, HP-5MS, Ultra-2, Equity™-5, CP-Sil 8CB low bleed/MS, Rtx®-5MS, Rtx®-6-SSIL-MS, Rtx®-5MS, 007-5MS, BPX™5, MDN-5S, AT™-5MS, VF-5MS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G27/G36</td>
<td>–</td>
<td>DB-XLB, Rtx®-XLB, Rtx®-XLB, MDN-12, VF-XMS</td>
</tr>
<tr>
<td></td>
<td>G43</td>
<td>HP-1301, DB-1301, SPB™-1301, Rtx®-1301, CP-1301, 007-1301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G43</td>
<td>VF-1301ms, Rtx®-1301Si MS, TG-1301MS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G43</td>
<td>HP-624, HP-VOC, DB-624, DB-VRX, SPB™-624, CP-624, Rtx®-624, Rtx®-Volatiles, 007-624, BP624, VOCOL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G46</td>
<td>OV-1701, DB-1701, CP-Sil 19 CB, HP-1701, Rtx®-1701, SPB™-1701, 007-1701, BP10, ZB-1701</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G46</td>
<td>VF-1701ms, TG-1701MS, OV-1701, DB-1701, HP-1701, Rtx®-1701, SPB™-1701, CP Sil 19 CB, 007-1701, BP10, ZB-1701</td>
<td></td>
</tr>
</tbody>
</table>

Note: For columns with 0.53 mm ID and for columns with thicker films temperature limits are generally lower.

www.mn-net.com
Summary of MN phases for GC

<table>
<thead>
<tr>
<th>Phase</th>
<th>Composition</th>
<th>Page</th>
<th>Relative polarity</th>
<th>Maximum temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMA® 35 MS</td>
<td>silylene phase with selectivity similar to 35% diphenyl – 65% dimethylpolysiloxane</td>
<td>326</td>
<td></td>
<td>360 / 370 °C</td>
</tr>
<tr>
<td>OPTIMA® 17</td>
<td>phenylmethylpolysiloxane, 50% phenyl</td>
<td>327</td>
<td></td>
<td>320 / 340 °C</td>
</tr>
<tr>
<td>OPTIMA® 17 MS</td>
<td>silylene phase with selectivity similar to 50% phenyl – 50% methylpolysiloxane</td>
<td>328</td>
<td></td>
<td>340 / 360 °C</td>
</tr>
<tr>
<td>OPTIMA® 210</td>
<td>trifluoropropylmethylpolysiloxane (50% trifluoropropyl)</td>
<td>329</td>
<td></td>
<td>260 / 280 °C</td>
</tr>
<tr>
<td>OPTIMA® 225</td>
<td>50% cyanopropylmethyl – 50% phenylmethylpolysiloxane</td>
<td>330</td>
<td></td>
<td>260 / 280 °C</td>
</tr>
<tr>
<td>OPTIMA® 240</td>
<td>33% cyanopropylmethyl – 67% dimethylpolysiloxan</td>
<td>331</td>
<td></td>
<td>260 / 280 °C</td>
</tr>
<tr>
<td>OPTIMA® WAX</td>
<td>polyethylene glycol 20 000 Da</td>
<td>332</td>
<td></td>
<td>240 / 250 °C</td>
</tr>
<tr>
<td>OPTIMA® WAXplus®</td>
<td>polyethylene glycol with optimized cross-linking</td>
<td>333</td>
<td></td>
<td>260 / 270 °C</td>
</tr>
<tr>
<td>OPTIMA® FFAP</td>
<td>polyethylene glycol 2-nitrotetrafulurate</td>
<td>334</td>
<td></td>
<td>250 / 260 °C</td>
</tr>
<tr>
<td>OPTIMA® FFAPplus</td>
<td>polyethylene glycol 2-nitrotetrafulurate with optimized cross-linking</td>
<td>335</td>
<td></td>
<td>250 / 260 °C</td>
</tr>
</tbody>
</table>

1. "= nonpolar, "= polar
2. First temperature (long term temperature) for isothermal operation, second value for the max. temperature (short term temperature) in a temperature program. Please note that for columns with 0.53 mm ID and for columns with thick films.
3. For details refer to the description of individual phases.
4. Phases which provide a similar selectivity based on chemical and physical properties.

GC columns for special separations can be found from page 339 onwards.
<table>
<thead>
<tr>
<th>Structure</th>
<th>USP</th>
<th>Similar phases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G3</td>
<td>OV-17, DB-17, HP-50+, HP-17, SPB™-50, SP-2250, Rx™-17, Rtx®-50, CP-Sil 24 CB, 007-17, ZB-50</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>OV-17, AT™-50, BPX™-50, DB-17, DB-17ms, HP-50+, HP-17, SPB™-50, SPB™-17, SP-2250, Rtx®-50, CP-Sil 24 CB, 007-17, 007-17ms, ZB-50</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>OV-210, DB-210, Rtx®-200, 007-210</td>
</tr>
<tr>
<td></td>
<td>G7/G19</td>
<td>DB-225, HP-225, OV-225, Rtx®-225, CP-Sil 43, 007-225, BP225</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>no similar phases</td>
</tr>
<tr>
<td></td>
<td>G16</td>
<td>PERMABOND® CW 20 M, DB-Wax, Supelcowax, HP-Wax, HP-INNOWAX, Rtx-Wax, CP-Wax 52 CB, Stabilwax, 007-CW, BP20, AT-Wax, ZB-Wax</td>
</tr>
<tr>
<td></td>
<td>G35/G25</td>
<td>PERMABOND® FFAP, DB-FFAP, HP-FFAP, CP-Wax 58 FFAP CB, 007-FFAP, CP-FFAP CB, Nukol™, AT-1000, SPB-1000, BP21, OV-351</td>
</tr>
</tbody>
</table>

For columns with 0.53 mm ID and for columns with thicker films, temperature limits are generally lower.
OPTIMA® 1 100 % dimethylpolysiloxane · USP G1/G2/G38

Key features
- Nonpolar phase
- Structure see page 307

Recommended application
- Separation of components according to boiling points
- Thick film columns ≥ 3 μm film are especially recommended for solvent analysis.

Temperature
- Columns with 0.1–0.32 mm ID and films < 3 μm:
 \(T_{\text{max}} = 340 \, ^{\circ}\text{C} \) (long-term temperature),
 \(T_{\text{max}} = 360 \, ^{\circ}\text{C} \) (short-term max. temperature in a temperature program)
- 0.53 mm ID, films < 3 μm:
 \(T_{\text{max}} = 320 \) and 340 °C, resp.
- Thick film columns with films ≥ 3 μm:
 max. temperatures 300 and 320 °C, resp.

Similar phases
- PERMABOND® SE-30 (see page 336), OV-1, DB-1, SE-30, HP-1, SPB™-1, CP-Sil 5 CB, Rtx®-1, 007-1, BP1, MDN-1, AT™-1, ZB-1, OV-101

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 1</th>
<th>Length</th>
<th>10 m</th>
<th>12 m</th>
<th>15 m</th>
<th>20 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726024.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.40 μm film</td>
<td>726025.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td></td>
<td>726832.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td>726834.12</td>
<td>726834.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726837.12</td>
<td>726837.25</td>
<td>726837.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td></td>
<td>726839.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726038.10</td>
<td>726038.15</td>
<td>726038.25</td>
<td>726038.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726050.10</td>
<td>726050.15</td>
<td>726050.25</td>
<td>726050.30</td>
<td>726050.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726081.10</td>
<td>726081.15</td>
<td>726081.25</td>
<td>726081.30</td>
<td>726081.50</td>
<td>726081.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726802.10</td>
<td>726802.15</td>
<td>726802.20</td>
<td>726802.30</td>
<td>726802.50</td>
<td>726802.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.10 μm film</td>
<td>726301.10</td>
<td>726301.25</td>
<td>726301.30</td>
<td>726301.50</td>
<td>726301.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726302.10</td>
<td>726302.15</td>
<td>726302.20</td>
<td>726302.30</td>
<td>726302.50</td>
<td>726302.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726303.10</td>
<td>726303.15</td>
<td>726303.25</td>
<td>726303.30</td>
<td>726303.50</td>
<td>726303.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726304.10</td>
<td>726304.15</td>
<td>726304.25</td>
<td>726304.30</td>
<td>726304.50</td>
<td>726304.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726323.10</td>
<td>726323.15</td>
<td>726323.20</td>
<td>726323.30</td>
<td>726323.50</td>
<td>726323.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00 μm film</td>
<td>726805.10</td>
<td>726805.25</td>
<td>726805.30</td>
<td>726805.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00 μm film</td>
<td>726805.10</td>
<td>726805.25</td>
<td>726805.30</td>
<td>726805.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>0.50 μm film</td>
<td>726519.15</td>
<td>726519.25</td>
<td>726519.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726529.10</td>
<td>726529.15</td>
<td>726529.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 μm film</td>
<td>726521.10</td>
<td>726521.25</td>
<td>726521.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00 μm film</td>
<td>726926.10</td>
<td>726926.25</td>
<td>726926.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
Solvent analysis

MN Appl. No. 201390

Column: OPTIMA® 1, 60 m x 0.32 mm ID, 1.0 μm film
Sample: solvent mixture, courtesy of J. Lutz, Alcan Rorschach, Switzerland
Injection: 0.4 μL, split 1:60
Carrier gas: H₂, 120 kPa
Temperature: 50 °C (9 min) → 90 °C, 4 °C/min → 280 °C (2 min), 14 °C/min
Detector: FID 300 °C

Peaks:
1. Methanol
2. Ethanol
3. Acetone
4. 2-Propanol
5. Methyl acetate
6. n-Propanol
7. Methyl ethyl ketone
8. Ethyl acetate
9. Isobutanol
10. n-Butanol
11. 1-Methoxy-2-propanol
12. Isooctane
13. Ethyl glycol
14. Isooctane
15. Methyl isobutyl ketone
16. 1-Ethoxy-2-propanol
17. Toluene
18. Isobutyl acetate
19. Butyl acetate
20. 4-Hydroxy-4-methyl-2-pentanone
21. 1-Methoxy-2-propyl acetate
22. Xylene
23. Cyclohexanone
24. Ethyl glycol acetate
25. Butyl glycol
26. Heptanol
27. Ethyl diglycol
28. Butyl diglycol
29. Butyl glycol acetate
30. Butyl diglycol acetate
OPTIMA® • nonpolar capillary columns

OPTIMA® 1 MS 100 % dimethylpolysiloxane • USP G1 / G2 / G38

Key features
- Selectivity identical to OPTIMA® 1, nonpolar phase
- Structure with low bleeding
- Structure see page 307

Recommended application
- GC/MS and ECD, general analysis at trace level

Temperature
- T_{max} 340 °C (long-term temperature), T_{max} 360 °C (short-term max. temperature in a temperature program)

Similar phases
- Ultra-1, DB-1MS, HP-1MS, Rxi[®]-1MS, Rtx[®]-1MS, Equity™-1, AT™-1MS, VF-1MS, CP-Sil 5 CB MS

Ordering information

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>12 m</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726201.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td>726205.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td>726202.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

OPTIMA® 1 MS Accent 100 % dimethylpolysiloxane • USP G1 / G2 / G38

Key features
- Selectivity identical to OPTIMA® 1, nonpolar phase
- Lowest column bleed
- Solvent rinsing for removal of impurities applicable
- Increased sensitivity due to an unmatched low background level
- Structure see page 307

Recommended application
- Ideal for ion trap and quadrupole MS detectors
- Perfect inertness for basic compounds
- All-round phase for environmental analysis, trace analysis, EPA methods, pesticides, PCB, food and drug analysis

Temperature
- T_{max} 340 °C (long-term temperature), T_{max} 360 °C (short-term max. temperature in a temperature program)

Similar phases
- Ultra-1, DB-1MS, HP-1MS, Rxi[®]-1MS, Rtx[®]-1MS, Equity™-1, AT™-1MS, VF-1MS, CP-Sil 5 CB MS
EPA 8140 / 8141 / 8141 A Organophosphorus pesticides
MN Appl. No. 213030

Column: OPTIMA® 1 MS Accent, 30 m x 0.32 mm ID, 0.50 μm film
Sample: 0.2 μg/mL in hexane, 8140 / 8141 OP pesticides calibration mix A and 8141 OP pesticides calibration mix B; IS triphenyl phosphate and tributyl phosphate
Injection: 250 °C, splitless (hold 1 min)
Carrier gas: He, 1 mL/min, constant pressure
Temperature: 100 °C → 180 °C, 10 °C/min (2 min) → 300 °C, 18 °C/min (3 min)
Detector: FPD (Flame Photometric Detector), 280 °C

Peaks:
1. Dichlorvos
2. Hexamethylphosphoramidate
3. Mevinphos
4. Trichlorfon
5. TEPP
6. Thionazin
7. Demeton-O
8. Ethoprop
9. Tributyl phosphate (IS)
10. Dicrotophos
11. Monocrotophos
12. Naled
13. Sultepp
14. Phorate
15. Dimethoate
16. Demeton-S
17. Dioxathion
18. Terbufos
19. Fonophos
20. Phosphamidon isomer
21. Diazinon
22. Disulfoton
23. Phosphamidon
24. Dichlorofenthion
25. Parathion-methyl
26. Chlorpyrifos-methyl
27. Ronnel
28. Fenitrothion
29. Malathion
30. Fenthion
31. Aspon
32. Parathion-ethyl
33. Chlorpyrifos
34. Trichloronate
35. Chlorfenvinphos
36. Merphos
37. Crotoxynphos
38. Stirofos
39. Tokuthion
40. Merphos oxidation product
41. Fensulfothion
42. Fumaphur
43. Ethion
44. Bolstar
45. Carbophenothion
46. Triphenyl phosphate (IS)
47. Phosmet
48. EPN
49. Azinphos-methyl
50. Leptophos
51. Tri-o-cresyl phosphate
52. Azinphos-ethyl
53. Coumaphos

Ordering information

OPTIMA® 1 MS Accent

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 μm film</td>
<td>725801.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td>725805.15</td>
<td>725805.30</td>
<td>725805.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>725806.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>725802.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>725807.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 5 5% phenyl – 95% methylpolysiloxane · USP G27/G36

Key features
- Nonpolar phase
- Structure see page 307

Recommended application
- Standard phase with large range of application

Temperature
- Columns with 0.1–0.32 mm ID and films < 3 μm:
 - T_{max} 340 °C (long-term temperature),
 - T_{max} 360 °C (short-term max. temperature in a temperature program)
- 0.53 mm ID, films < 3 μm:
 - T_{max} 320 and 340 °C, resp.
- Thick film columns with films ≥ 3 μm:
 - max. temperatures 300 and 320 °C, resp.

Similar phases
- PERMABOND® SE-52 (see page 336), SE-54, SE-52, HP-5, SPB™-5, CP-Sil 8, Rtx®-5, 007-5, BP5, MDN-5, AT™-5, ZB-5

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 5</th>
<th>Length →</th>
<th>10 m</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726846.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726854.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td>726857.25</td>
<td>726857.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726860.25</td>
<td>726860.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726863.25</td>
<td>726863.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726911.25</td>
<td>726911.30</td>
<td>726911.50</td>
<td>726911.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726056.10</td>
<td>726056.15</td>
<td>726056.25</td>
<td>726056.30</td>
<td>726056.50</td>
<td>726056.60</td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726623.25</td>
<td>726623.30</td>
<td>726623.50</td>
<td>726623.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726099.25</td>
<td>726099.30</td>
<td>726099.50</td>
<td>726099.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726807.25</td>
<td>726807.30</td>
<td>726807.50</td>
<td>726807.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.10 μm film</td>
<td>726313.10</td>
<td>726313.15</td>
<td>726313.25</td>
<td>726313.30</td>
<td>726313.50</td>
<td>726313.60</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726314.15</td>
<td>726314.19</td>
<td>726314.25</td>
<td>726314.30</td>
<td>726314.50</td>
<td>726314.60</td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726628.25</td>
<td>726628.30</td>
<td>726628.50</td>
<td>726628.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726316.25</td>
<td>726316.30</td>
<td>726316.50</td>
<td>726316.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726325.15</td>
<td>726325.25</td>
<td>726325.30</td>
<td>726325.50</td>
<td>726325.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 μm film</td>
<td>726809.25</td>
<td>726809.30</td>
<td>726809.50</td>
<td>726809.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00 μm film</td>
<td>726934.15</td>
<td>726934.19</td>
<td>726934.30</td>
<td>726934.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>0.50 μm film</td>
<td>726523.10</td>
<td>726523.15</td>
<td>726523.25</td>
<td>726523.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726541.10</td>
<td>726541.15</td>
<td>726541.25</td>
<td>726541.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 μm film</td>
<td>726525.10</td>
<td>726525.15</td>
<td>726525.25</td>
<td>726525.30</td>
<td>726525.50</td>
<td>726525.60</td>
<td></td>
</tr>
<tr>
<td>5.00 μm film</td>
<td>726916.10</td>
<td>726916.15</td>
<td>726916.25</td>
<td>726916.30</td>
<td>726916.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® 5 MS 5 % diphenyl – 95 % dimethylpolysiloxane · USP G27 / G36

Key features
- Selectivity identical to OPTIMA® 5
- Phase with low bleeding
- Structure see page 307

Recommended application
- GC/MS and ECD, applications and general analysis at trace level
- Perfect inertness for basic compounds

Temperature
- T_{max} 340 °C (long-term temperature), T_{max} 360 °C (short-term max. temperature in a temperature program)

Similar phases
- DB-5, DB-5MS, HP-5MS, Ultra-2, Equity™-5, CP-Sil 8CB low bleed/MS, Rtx®-5MS, Rtx®-5SIL-MS, Rtx®-5MS, 007-5MS, BPX™5, MDN-5S, AT™-5MS, VF-5MS

Analysis of various phenols

MN Appl. No. 210110

<table>
<thead>
<tr>
<th>Peaks</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Temperature: 40 °C (2 min) → 240 °C, 6 °C/min → 320 °C, 20 °C/min
Detector: MSD

Ordering information

OPTIMA® 5 MS

<table>
<thead>
<tr>
<th>Length</th>
<th>12 m</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td>726210.12</td>
<td>726210.25</td>
<td>726210.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726215.12</td>
<td>726215.25</td>
<td>726215.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726220.15</td>
<td>726220.30</td>
<td>726220.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726225.30</td>
<td>726225.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726226.30</td>
<td>726226.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726211.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726213.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726212.25</td>
<td>726212.50</td>
<td>726212.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

[Image of chromatogram showing peaks 1 to 14 labeled with compound names, along with analysis conditions and courtesy note.]
OPTIMA® 5 MS Accent · silarylene phase · USP G27/G36

Key features
- Chemically bonded, cross-linked silarylene phase with polarity similar to a 5% diphenyl - 95% dimethylpolysiloxane phase
- Lowest column bleed, nonpolar phase, solvent rinsing for removal of impurities applicable
- Structure see page 307

Recommended application
- Ideal for ion trap and quadrupole MS detectors
- Perfect inertness for basic compounds
- All-round phase for environmental analysis, trace analysis, EPA methods, pesticides, PCB, food and drug analysis

Temperature
- \(T_{\text{max}} \) 340 °C (long-term temperature), \(T_{\text{max}} \) 360 °C (short-term max. temperature in a temperature program)
- Film thickness > 0.5 μm: \(T_{\text{max}} \) 320 and 340 °C, resp.

Similar phases
- DB-5, DB-5MS, HP-5MS, Ultra-2, Equity™-5, CP-Sil 8CB low bleed/MS, Rtx®-5MS, Rtx®-5SIL-MS, Rtx®-5MS, 007-5MS, BPX™5, MDN-5S, AT™-5MS, VF-5MS

Increased sensitivity due to an unmatched low background level

The bleed comparison test of OPTIMA® 5 MS Accent with a conventional 5 MS phase shows the outstanding performance of the silarylene phase.

The unmatched low background level of the OPTIMA® 5 MS Accent, which is approximately three times lower compared to a 5 MS brand column, provides significantly increased sensitivity and allows its application in trace analysis particularly of high-boiling compounds.

Background noise at 340 °C

![Graph comparing background noise](image)

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 5 MS Accent</th>
<th>Length (m)</th>
<th>12 m</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 mm ID (0.4 mm OD)</td>
<td>0.20 μm film</td>
<td>725810.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35 μm film</td>
<td>725815.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.25 μm film</td>
<td>725820.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50 μm film</td>
<td>725825.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00 μm film</td>
<td>725826.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>725811.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50 μm film</td>
<td>725813.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00 μm film</td>
<td>725812.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® XLB silarylene phase

Key features
- Chemically bonded, cross-linked silarylene phase, optimized silarylene content for lowest column bleed, nonpolar phase, perfect inertness for basic compounds, solvent rinsing for removal of impurities applicable
- Structure see page 307

Recommended application
- Ideal for ion trap and quadrupole MS detectors, ultra low bleed phase, highly selective for environmental and trace analysis, pesticides, recommended phase for PCB separations

Temperature
- T_{max} 340 °C (long-term temperature), T_{max} 360 °C (short-term max. temperature in a temperature program)

Similar phases
- DB-XLB, Rx®-XLB, Rtx®,-XLB, MDN-12, VF-XMS

Rapid separation of PCB and PAH

MN Appl. No. 212920

Column: OPTIMA® XLB, 30 m x 0.25 mm ID, 0.25 μm film
Injection: 1 μL, Standard 0.005 ng/μL, 250 °C, pulsed, splitless, pulse 1.38 bar in 1 min
Carrier gas: 60 mL/min He
Temperature: 40 °C (2 min) → 240 °C (2 min), 30 °C/min → 340 °C (5 min), 10 °C/min
Detection: MS source 230 °C, interface 280 °C, quadrupole 150 °C

Peaks:
1. Naphthalene
2. 2-Methylnaphthalene
3. Acenaphthylene
4. Acenaphthene
5. Fluorene
6. Phenanthrene
7. Anthracene
8. PCB-31
9. PCB-28
10. PCB-52
11. Fluoranthene
12. PCB-101
13. Pyrene
14. PCB-77
15. 2-Methylfluoranthene
16. PCB-118
17. PCB-153
18. PCB-138
19. PCB-126
20. PCB-180
22. Chrysene
23. PCB-169
24. PCB-194
25. Benzo[b]fluoranthene
26. Benzo[k]fluoranthene
27. Benzo[a]pyrene
28. Dibenzo[a]anthracene
29. Indeno[1,2,3-cd]pyrene
30. Benzo[ghi]perylene

82 % separation in less than 10 min!

Ordering information

OPTIMA® XLB

<table>
<thead>
<tr>
<th>Length</th>
<th>30 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>725850.30</td>
<td>725850.60</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® δ · phases with autoselectivity

Range of polarities covered by OPTIMA® δ phases

All stationary GC phases can be classified by their polarities. While the selectivity of common GC phases is generally determined by permanent dipole-dipole interactions, OPTIMA® δ-3 and OPTIMA® δ-6 show an additional feature. Large, polarizable groups in the polymer chain of the stationary phase enable the analyte to induce a further dipole moment that increases with the polarity of said analyte. We call this phenomenon “Autoselectivity”, because the column adjusts itself to the polarity of the analyte. The implemented polymers consist of cross-linked polysiloxanes with a defined composition and an extremely narrow distribution of molecular weight.

OPTIMA® δ phases cover broad ranges of polarities. Compared with conventional phases, OPTIMA® δ-3 polarity ranges from approximately the nonpolar OPTIMA® 5 to the midpolar OPTIMA® 1701, while for OPTIMA® δ-6 the polarity covers a range from about the midpolar OPTIMA® 17 to the polar OPTIMA® 210.

OPTIMA® δ phases show high temperature limits (340 / 360 °C), as well as low bleed levels, which makes them ideal for the use with mass selective (MSD) or phosphorus/nitrogen detectors (PND) in the field of environmental trace analysis.

Isomeric phenols, such as chloro- and nitrophenols, are difficult to analyze with standard GC phases (e.g., OPTIMA® 5 or OPTIMA® 17) because of co-elutions. The autoselective OPTIMA® δ-3 is able to separate all 22 phenols due to stronger interactions occurring with more polar molecules, because polar analytes induce a dipole moment in the phase of the OPTIMA® δ-3 (see chromatogram page 319).

Separation characteristics of OPTIMA® δ phases

Key features of OPTIMA® δ phases
- Wide range of application due to autoselectivity
- Outstanding thermal stability similar to nonpolar phases
- Low bleed levels
- Medium polar without CN groups

Ordering information about OPTIMA® δ phases can be found on page 319 and page 320.
OPTIMA® δ-3 polysiloxane phase with autoselectivity · USP G49

Key features

- Medium polar without CN groups
- Autoselectivity resulting in a polarity range from approximately the nonpolar OPTIMA® 5 to the midpolar OPTIMA® 1701 (see page 318)
- Analytes determine the polarity of the phase

Recommended application

- Ideal for MSD and PND detectors

Temperature

- 0.1–0.32 mm ID: T_{max} 340 °C (long-term temperature), T_{max} 360 °C (short-term max. temperature in a temperature program)
- 0.53 mm ID: T_{max} 320 and 340 °C, resp.

Similar phases

- Exclusive from MN

Analysis of isomeric phenols

MN Appl. No. 250060

<table>
<thead>
<tr>
<th>Peaks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phenol</td>
<td>1.</td>
</tr>
<tr>
<td>2. 2-Chlorophenol</td>
<td>13.</td>
</tr>
<tr>
<td>3. 2-Methylphenol</td>
<td>14.</td>
</tr>
<tr>
<td>4. 4-Methylphenol</td>
<td>15.</td>
</tr>
<tr>
<td>5. 3-Methylphenol</td>
<td>16.</td>
</tr>
<tr>
<td>6. 2,4-Dimethylphenol</td>
<td>17.</td>
</tr>
<tr>
<td>7. 2-Nitrophenol</td>
<td>18.</td>
</tr>
<tr>
<td>8. 2,4-Dichlorophenol</td>
<td>19.</td>
</tr>
<tr>
<td>9. 2,6-Dichlorophenol</td>
<td>20.</td>
</tr>
<tr>
<td>10. 4-Chloro-3-methylphenol</td>
<td>21.</td>
</tr>
<tr>
<td>11. 2,3,5-Trichlorophenol</td>
<td>22.</td>
</tr>
<tr>
<td>12. 2,4,6-Trichlorophenol</td>
<td></td>
</tr>
</tbody>
</table>

Ordering information

OPTIMA® δ-3

<table>
<thead>
<tr>
<th>Length →</th>
<th>10 m</th>
<th>20 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726410.10</td>
<td>726410.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td>0.20 μm film</td>
<td>726400.25</td>
<td>726400.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.25 μm film</td>
<td>726420.30</td>
<td>726420.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 mm film</td>
<td>726421.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>726440.30</td>
<td>726440.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 mm film</td>
<td>726441.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 mm film</td>
<td>726442.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>1.00 μm film</td>
<td>726443.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® δ-6 polylsiloxane phase with autoselectivity

Key features
- Medium polar without CN groups
- Autoselectivity resulting in a polarity range from approximately the midpolar OPTIMA® 17 to the polar OPTIMA® 210 (see page 318)
- Analytes determine the polarity of the phase

Recommended application
- Ideal for MSD and PND detectors

Temperature
- 0.1–0.32 mm ID:
 - T_{max}: 340 °C (long-term temperature), T_{max}: 360 °C (short-term max. temperature in a temperature program)
- 0.53 mm ID:
 - T_{max}: 320 and 340 °C, resp.

Similar phases
- Exclusive from MN

Separation of organophosphorus pesticides (EPA 8140 / 8141)

Column: OPTIMA® δ-6, 50 m x 0.2 mm ID, 0.2 μm film
Sample: EPA 8140 OP pesticide calibration mix (Restek), 200 μg/mL each in hexane – acetone (95:5)
Injection: 1 μL, split 1:30
Carrier gas: 2.0 bar He
Temperature: 150 °C → 300 °C (10 min), 2.5 °C/min
Detector: MSD HP 5971
Peaks:
1. Dichlorvos
2. Mevinphos
3. Demeton-S
4. Ethoprop
5. Naled
6. Phorate
7. Demeton-O
8. Diazinon
9. Disulfoton
10. Ronnel
11. Parathion-methyl
12. Chlorpyrifos
13. Trichlororate
14. Fenithion
15. Merphos
16. Stirofos
17. Tokuthion
18. Merphos oxidation product
19. Fensulfothion
20. Bolstar
21. Azinphos-methyl
22. Coumaphos

Ordering information

OPTIMA® δ-6

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td>726490.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td>726465.25</td>
<td>726465.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726470.30</td>
<td>726470.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>726480.30</td>
<td>726480.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 mm ID</td>
<td>726481.30</td>
<td>726481.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 mm ID</td>
<td>726482.30</td>
<td>726482.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>726483.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 1301 6 % cyanopropyl-phenyl – 94 % dimethylpolysiloxane · USP G43

Key features
- Midpolar phase
- Structure see page 307

Recommended application
- Pesticide analysis
- For corresponding columns with higher film thickness see OPTIMA® 624

Temperature
- T_{max} 300 °C (long-term temperature), T_{max} 320 °C (short-term max. temperature in a temperature program)

Similar phases
- HP-1301, DB-1301, SPB™-1301, Rtx®-1301, CP-1301, 007-1301

Analysis of a pesticide mixture

MN Appl. No. 210620

- Column: OPTIMA® 1301, 60 m x 0.25 mm ID, 0.25 μm film
- Injection: 3 μL (0.1 ng/μL), 80 °C (1 min) → 250 °C (1 min) pulsed splitless
- Carrier gas: He, 54 mL/min
- Temperature: 80 °C (2 min) → 190 °C, 20 °C/min (12 min) → 240 °C, 2 °C/min (23 min) → 260 °C, 10 °C/min (20 min)
- Detector: ECD

Peaks:
1. Propyzamide
2. Vinclozolin
3. Bromophos-ethyl
4. 2,4-DDT
5. Brompropylate

Analysis of a PCB mixture

MN Appl. No. 210650

- Column: OPTIMA® 1301, 60 m x 0.25 mm ID, 0.25 μm film
- Injection: 3 μL (0.1 ng/μL), 80 °C (1 min) → 250 °C (1 min) pulsed splitless
- Carrier gas: He, 54 mL/min
- Temperature: 80 °C (2 min) → 190 °C, 20 °C/min (12 min) → 240 °C, 2 °C/min (23 min) → 260 °C, 10 °C/min (20 min)
- Detector: ECD

Peaks:
1. PCB-28
2. PCB-52
3. PCB-128
4. PCB-153
5. PCB-138
6. PCB-180

Ordering information

OPTIMA® 1301

<table>
<thead>
<tr>
<th>Length</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726771.25</td>
<td>726771.30</td>
<td>726771.50</td>
<td>726771.60</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726777.25</td>
<td>726777.30</td>
<td>726777.60</td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726780.30</td>
<td>726780.50</td>
<td>726780.60</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726783.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® 1301 MS 6% cyanopropyl-phenyl – 94% dimethylpolysiloxane - USP G43

Key features
- Chemically bonded, cross-linked silarylene phase with selectivity similar to 6% cyanopropyl-phenyl – 94% dimethylpolysiloxane, symmetric substituted cyanopropylsilanes and integrated phenyl rings (silarylene)
- Midpolar phase with very low bleed
- Perfect deactivation
- Structure see page 307

Recommended application
- Specially suitable for sophisticated environmental analysis (e.g., EPA methods for PAHs, PCBs and pesticides)
- 100% ion trap and quadrupol MS compatibility

Temperature
- T_{max} 300 °C (long-term temperature), T_{max} 320 °C (short-term max. temperature in a temperature program)

Similar phases
- VF-1301ms, Rx®-1301Sil MS, TG-1301MS

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 1301 MS</th>
<th>Length</th>
<th>30 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.25 μm film</td>
<td>726640.30</td>
<td>726640.60</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>726641.30</td>
<td>726641.60</td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726642.30</td>
<td>726642.60</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>1.00 μm film</td>
<td>726643.30</td>
<td>726643.60</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 624 6 % cyanopropyl-phenyl – 94 % dimethylpolysiloxane · USP G43

- **Key features**
 - Midpolar phase
 - Structure see page 307

- **Recommended application**
 - Environmental analysis
 - For corresponding columns with lower film thickness see OPTIMA® 1301

- **Temperature**
 - T_{max} 280 °C (long-term temperature), T_{max} 300 °C (short-term max. temperature in a temperature program)

Similar phases
- HP-624, HP-VOC, DB-624, DB-VRX, SPB™-624, CP-624, Rtx®-624, Rtx®-Volatiles, 007-624, BP624, VOCOL

OPTIMA® 624 LB 6 % cyanopropyl-phenyl – 94 % dimethylpolysiloxane

- **Key features**
 - Midpolar phase with low bleeding
 - Structure see page 307

- **Recommended application**
 - Halogenated hydrocarbons, volatiles, aromatic compounds, solvents etc.

Solvents and semi-volatiles

MN Appl. No. 212520

Column: OPTIMA® 624 LB, 30 m x 0.32 mm ID, 1.8 μm film; retention gap Phe-Sil 0.5 m x 0.53 mm

Injection: 1 μL (10 ppm per substance in acetone), cold on-column

Carrier gas: 1.1 bar He

Temperature:
- 45 °C (3 min) → 150 °C (6 °C/min) → 300 °C (18 °C/min), 20 min 300 °C

Detector: FID 280 °C

Peaks:
1. Acetone 11. Decane
2. Ethyl acetate 12. 1-Octanol
3. Tetrahydrofuran 13. Acetophenone
5. 2-Methyl-2-butanol 15. Heptanophenone
6. 1-Butanol 16. 5-Methoxyindole
7. Pyridine 17. Dibenzylamine
8. Toluene 18. Methyl eicosanoate
10. Dimethylsulfoxide 20. Methyl docosanoate

Ordering information

<table>
<thead>
<tr>
<th>Length</th>
<th>OPTIMA® 624</th>
<th>OPTIMA® 624 LB</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 m</td>
<td>0.2 mm ID (0.4 mm OD)</td>
<td>0.32 mm ID (0.5 mm OD)</td>
</tr>
<tr>
<td></td>
<td>1.10 μm film</td>
<td>1.80 μm film</td>
</tr>
<tr>
<td></td>
<td>726784.25</td>
<td>726786.30</td>
</tr>
<tr>
<td>30 m</td>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.32 mm ID (0.5 mm OD)</td>
</tr>
<tr>
<td></td>
<td>1.40 μm film</td>
<td>1.80 μm film</td>
</tr>
<tr>
<td></td>
<td>726785.25</td>
<td>726787.25</td>
</tr>
<tr>
<td></td>
<td>726785.30</td>
<td>726787.30</td>
</tr>
<tr>
<td>50 m</td>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.80 μm film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>726785.50</td>
<td></td>
</tr>
<tr>
<td>60 m</td>
<td>0.53 mm ID (0.8 mm OD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.00 μm film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>726785.60</td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
Key features
- Midpolar phase, special selectivity due to high cyanopropyl content
- Structure see page 307

Recommended application
- Reference column for structure identification, e.g., in combination with OPTIMA® 5
- Film thickness ≥ 1 μm for solvent analysis

Temperature
- T_{max} 280 °C (long-term temperature), T_{max} 300 °C (short-term max. temperature in a temperature program)
- 0.53 mm ID: T_{max} 280 and 300 °C, resp.

Similar phases
- OV-1701, DB-1701, CP-Sil 19 CB, HP-1701, Rtx®-1701, SPB™-1701, 007-1701, BP10, ZB-1701

Analysis of aromatic hydrocarbons

<table>
<thead>
<tr>
<th>Column:</th>
<th>OPTIMA® 1701, 25 m x 0.32 mm ID, 0.25 μm film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection:</td>
<td>1 μL, split 1:40</td>
</tr>
<tr>
<td>Carrier gas:</td>
<td>0.6 bar N₂</td>
</tr>
<tr>
<td>Temperature:</td>
<td>60 °C → 120 °C, 4 °C/min</td>
</tr>
<tr>
<td>Detector:</td>
<td>FID 260 °C</td>
</tr>
</tbody>
</table>

Peaks:
1. Benzene
2. Toluene
3. Ethylbenzene
4. p-Xylene
5. O-Xylene
6. Phenol
7. 2-Methylphenol
8. 2,6-Dimethylphenol
9. 4-Methylphenol
10. 2,4-Dimethylphenol
11. 2,4,6-Trimethylphenol

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 1701</th>
<th>Length →</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 m</td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td>726841.25</td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726058.10</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726318.10</td>
</tr>
<tr>
<td>0.35 μm film</td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726120.25</td>
</tr>
<tr>
<td>1.00 μm film</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726545.10</td>
</tr>
<tr>
<td>1.00 μm film</td>
<td></td>
</tr>
<tr>
<td>2.00 μm film</td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® 1701 MS silarylene phase · USP G46

Key features
- Chemically bonded, cross-linked silarylene phase with selectivity similar to 14% cyanopropyl-phenyl – 86% dimethylpolysiloxane, symmetric substituted cyanopropylsilanes and integrated phenyl rings (silarylene)
- Midpolar phase with very low bleed
- Perfect deactivation
- Structure see page 307

Recommended application
- Environmental analysis (e.g., PAHs, PCBs, pesticides)
- Reference column for structure identification, e.g., in combination with OPTIMA® 5 MS
- 100% ion trap and quadrupole MS compatibility

Temperature
- T_{max} 280 °C (long-term temperature),
- T_{max} 300 °C (short-term max. temperature in a temperature program)

Similar phases
- VF-1701ms, TG-1701MS, OV-1701, DB-1701, HP-1701, Rtx®-1701, SPB™-1701, CP Sil 19 CB, 007-1701, BP10, ZB-1701

Separation of triazine pesticides (EPA 619)

Column: OPTIMA® 1701 MS, 30 m x 0.25 mm ID, 0.25 μm film
Injection: 1 μL, 250 °C, split 1:100
Carrier gas: 42 cm/s He
Temperature: 160 °C (1 min) → 180 °C, 15 °C/min → 220 °C, 2 °C/min
Detector: MSD

Peaks:
1. Prometon
2. Atraton
3. Propazine
4. Atrazine
5. Simazine
6. Terbutylazine
7. Secbumeton
8. Prometryn
9. Ametryn
10. Simetryn
11. Terbutryn

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 1701 MS</th>
<th>Length →</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 m</td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726630.30</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726631.30</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726632.30</td>
</tr>
<tr>
<td>1.00 μm film</td>
<td></td>
</tr>
</tbody>
</table>

0.32 mm ID (0.5 mm OD)

<table>
<thead>
<tr>
<th>OPTIMA® 1701 MS</th>
<th>Length →</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 m</td>
</tr>
<tr>
<td>0.25 mm ID (0.5 mm OD)</td>
<td>726633.30</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726634.30</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726635.30</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 35 MS silarylene phase · USP G42 / close equivalent to USP G28 / G32

Key features
- Chemically bonded cross-linked silarylene phase with selectivity similar to 35% phenyl – 65% methyl polysiloxane, midpolar phase, polymer without CN groups
- Very low column bleeding
- Structure see page 309

Recommended application
- Ideal for ion trap detectors
- Optimum column for confirmation of analytical results in combination with a 1 MS or 5 MS
- All-round phase for environmental analysis, ultra trace analysis, EPA methods, pesticides, PCB, food and drug analysis

Temperature
- \(T_{\text{max}} \) 360 °C (long-term temperature), \(T_{\text{max}} \) 370 °C (short-term max. temperature in a temperature program)

Similar phases

PAH in accordance with EPA 610

Column: OPTIMA® 35 MS, 30 m x 0.25 mm ID, 0.25 μm film
Injection: 1 μL, split 1:10
Carrier gas: 0.6 bar \(\text{H}_2 \)
Temperature: 100 °C (3 min) → 300 °C (10 min), 6 °C/min
Detector: MSD

Peaks
1. Naphthalene
2. Acenaphthylene
3. Acenaphthene
4. Fluorene
5. Phenanthrene
6. Anthracene
7. Fluoranthenes
8. Pyrene
9. Benzo[a]anthracene
10. Chrysene
11. Benzo[ghi]perylene
12. Benzo[a]fluoranthene
13. Benzo[e]pyrene
14. Indeno[1,2,3-cd]pyrene
15. Dibenz[a]anthracene
16. Benzo[ghi]perylene

Ordering information
OPTIMA® 35 MS

<table>
<thead>
<tr>
<th>Length</th>
<th>30 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726154.30</td>
<td>726154.60</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726154.30</td>
<td>726154.60</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® • medium polar capillary columns

OPTIMA® 17 phenylmethy polysiloxane (50% phenyl) • USP G3

Key features
- Midpolar phase
- Structure see page 309

Recommended application
- Steroids, pesticide, drug analysis

Temperature
- \(T_{\text{max}} \) 320 °C (long-term temperature), \(T_{\text{max}} \) 340 °C (short-term max. temperature in a temperature program)
- 0.53 mm ID: \(T_{\text{max}} \) 300 and 320 °C resp.

Similar phases
- OV-17, DB-17, HP-50+, HP-17, SPB™-50, SP-2250, Rxi®-17, Rtx®-50, CP-Sil 24 CB, 007-17, ZB-50

Analysis of pesticides
MN Appl. No. 200930

Column: OPTIMA® 17, 25 m x 0.2 mm ID, 0.20 μm film
Sample: pesticides, standard of the cantonal laboratory Schaffhausen (Switzerland), 0.1 mg/mL or 0.01 mg/mL each
Injection: 1.0 μL, 3 s without split
Carrier gas: He, 25 cm/s
Temperature: 100 °C (3 min), 8 °C/min → 250 °C, 10 °C/min → 320 °C
Detector: MSD HP 5971

Peaks:
1. Dichlorphos
2. Naled
3. Vinclozolin
4. Chlorthalonil
5. Chlorpyrifos
6. Dichlofluorid
7. Procymidon
8. Captan
9. Folpet
10. Carbophenothion
11. Iprodion
12. Captafol
13. Coumaphos

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 17</th>
<th>Length →</th>
<th>10 m</th>
<th>12 m</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>726848.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>726065.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 μm film</td>
<td>726065.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726066.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15 μm film</td>
<td>726744.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726744.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726744.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>726755.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15 μm film</td>
<td>726351.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726757.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726744.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726747.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 17 MS silarylene phase · USP G3

Key features
- Medium polar silarylene phase with selectivity analogue to 50 % phenyl – 50 % methylpolysiloxane, no CN groups in the polymer
- Structure see page 309

Recommended application
- Ideal for ion trap detectors
- Optimum reference column in combination with a 1 MS or 5 MS
- All-round phase for environmental analysis, ultra-trace analysis, EPA methods, pesticide, PCBs, food and drug analysis

Temperature
- \(T_{\text{max}} \) 340 °C (long-term temperature),
- \(T_{\text{max}} \) 360 °C (short-term max. temperature in a temperature program)

Similar phases
- OV-17, AT™-50, BPX™-50, DB-17, DB-17ms, HP-50+, HP-17, SPB™-50, SPB™-17, SP-2250, Rtx®-50, CP-Sil 24 CB, 007-17, VF-17ms, ZB-50

Analysis of phenols

MN Appl. No. 213600

<table>
<thead>
<tr>
<th>Peaks:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phenol</td>
<td></td>
</tr>
<tr>
<td>2. 2-Chlorophenol</td>
<td></td>
</tr>
<tr>
<td>3. 2,4-Dimethylphenol</td>
<td></td>
</tr>
<tr>
<td>4. 2-Nitrophenol</td>
<td></td>
</tr>
<tr>
<td>5. 2,4-Dichlorophenol</td>
<td></td>
</tr>
<tr>
<td>6. 4-Chloro-3-methylphenol</td>
<td></td>
</tr>
<tr>
<td>7. 2,4,6-Trichlorophenol</td>
<td></td>
</tr>
<tr>
<td>8. 4-Nitrophenol</td>
<td></td>
</tr>
<tr>
<td>9. 2,4-Dinitrophenol</td>
<td></td>
</tr>
<tr>
<td>10. 2-Methyl-4,6-dinitrophenol</td>
<td></td>
</tr>
<tr>
<td>11. Pentachlorophenol</td>
<td></td>
</tr>
</tbody>
</table>

- **Column:** OPTIMA® 17 MS, 30 m x 0.25 mm ID, 0.25 μm film
- **Sample:** phenol mix 604
- **Injection:** 1.0 μL, 230 °C, split 1:30
- **Carrier gas:** 0.8 bar He
- **Temperature:** 100 °C, 10 °C/min → 250 °C
- **Detector:** FID 280 °C

Ordering information

OPTIMA® 17 MS

<table>
<thead>
<tr>
<th>Length →</th>
<th>30 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726162.30</td>
<td>726162.60</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>726165.30</td>
<td>726165.60</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® 210 trifluoropropyl-methylpolysiloxane (50 % trifluoropropyl) · close equivalent to USP G6

Key features
- Midpolar phase
- Structure see page 309

Recommended application
- Environmental analysis, especially for α-, m- and p-substituted aromatic hydrocarbons

Similar phases
- OV-210, DB-210, Rtx®-200, 007-210

Temperature
- T_{max} 260 °C (long-term temperature), T_{max} 280 °C (short-term max. temperature in a temperature program)

Aromatic hydrocarbons (BTX)

| Column: OPTIMA® 210, 50 m x 0.25 mm ID, 0.5 μm film |
| Injection: 0.5 μL, split 105 mL/min |
| Carrier gas: 130 kPa N₂ (1.1 mL/min) |
| Temperature: 50 °C |
| Detector: FID 250 °C |

Peaks:
1. Benzene
2. Toluene
3. Ethylbenzene
4. p-Xylene
5. m-Xylene
6. o-Xylene

Ordering information

<p>| OPTIMA® 210 |</p>
<table>
<thead>
<tr>
<th>Length</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726871.15</td>
<td>726871.25</td>
<td>726871.30</td>
<td>726871.50</td>
<td>726871.60</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td></td>
<td>726874.30</td>
<td>726874.50</td>
<td>726874.60</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726877.15</td>
<td>726877.30</td>
<td>726877.50</td>
<td>726877.60</td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td></td>
<td>726880.25</td>
<td>726880.30</td>
<td>726880.50</td>
<td>726880.60</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 225 50 % cyanopropyl-methyl – 50 % phenylmethylpolysiloxane · close equivalent to USP G7/G19

Key features
- Midpolar phase
- Structure see page 309

Recommended application
- Fatty acid analysis

Temperature
- T_{max} 260 °C (long-term temperature), T_{max} 280 °C (short-term max. temperature in a temperature program)

Similar phases
- OV-210, DB-210, Rtx®-200, 007-210

Analysis of FAME in porcine fat
MN Appl. No. 210060

Column: OPTIMA® 225, 25 m x 0.32 mm ID, 0.25 μm film
Injection: 1 μL, split 1:40
Carrier gas: 60 kPa H₂
Temperature: 50 °C (2 min) → 125 °C, 30 °C/min → 160 °C, 5 °C/min → 180 °C, 20 °C/min → 200 °C, 3 °C/min → 220 °C, 20 °C/min (10 min)
Detector: FID 260 °C

Peaks:
1. C4:0
2. C5:0
3. C6:0
4. C8:0
5. C10:0
6. C11:0
7. C12:0
8. C13:0
9. C13:1
10. C14:0
11. C14:1
12. C15:0
13. C15:1
14. C16:0
15. C16:1
16. C17:0
17. C17:1
18. C18:0
19. C18:1
20. C18:2
21. C18:3
22. C19:0
23. C20:0
24. C20:1
25. C20:2
26. C20:3
27. C20:4
28. C20:5
29. C22:0
30. C22:1
31. C22:2
32. C22:3
33. C22:4
34. C22:5
35. C23:0
36. C24:0
37. C24:1
38. C24:2
39. C24:3
40. C24:4
41. C25:0
42. C25:1
43. C25:2
44. C25:3
45. C25:4
46. C25:5
47. C26:0
48. C26:1
49. C26:2
50. C26:3
51. C26:4
52. C26:5
53. C27:0
54. C27:1
55. C27:2
56. C27:3
57. C27:4
58. C27:5
59. C28:0
60. C28:1
61. C28:2
62. C28:3
63. C28:4
64. C28:5
65. C29:0
66. C29:1
67. C29:2
68. C29:3
69. C29:4
70. C29:5
71. C30:0
72. C30:1
73. C30:2
74. C30:3
75. C30:4
76. C30:5
77. C31:0
78. C31:1
79. C31:2
80. C31:3
81. C31:4
82. C31:5
83. C32:0
84. C32:1
85. C32:2
86. C32:3
87. C32:4
88. C32:5
89. C33:0
90. C33:1
91. C33:2
92. C33:3
93. C33:4
94. C33:5
95. C34:0
96. C34:1
97. C34:2
98. C34:3
99. C34:4
100. C34:5
101. C35:0
102. C35:1
103. C35:2
104. C35:3
105. C35:4
106. C35:5
107. C36:0
108. C36:1
109. C36:2
110. C36:3
111. C36:4
112. C36:5

Ordering information
OPTIMA® 225

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>15 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>726080.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726118.15</td>
<td>726118.25</td>
<td>726118.30</td>
<td>726118.50</td>
<td>726118.60</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726352.25</td>
<td>726352.30</td>
<td>726352.50</td>
<td>726352.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® 240 33 % cyanopropyl-methyl – 67 % dimethylpolysiloxane

Key features
- Midpolar phase
- Structure see page 309

Recommended application
- FAMEs, dioxins

Temperature
- \(T_{\text{max}} \) 260 °C (long-term temperature), \(T_{\text{max}} \) 280 °C (short-term max. temperature in a temperature program)

Fatty acid methyl esters cis/trans C18:1 (FAME)

MN Appl. No. 201620

Column: OPTIMA® 240, 60 m x 0.25 mm ID, 0.25 μm film
Sample: FAME mixture
Injection: 1.0 μL, split 1:25
Carrier gas: 150 kPa \(\text{H}_2 \)
Temperature: 80 °C → 120 °C, 20 °C/min → 260 °C (10 min), 3 °C/min
Detector: FID 280 °C

Peaks:
1. C4:0
2. C5:0
3. C8:0
4. C10:0
5. C11:0
6. C12:0
7. C13:0
8. C14:0
9. C14:1
10. C15:0
11. C15:1
12. C16:0
13. C16:1
14. C17:0
15. C17:1
16. C18:0
17. trans-C18:1

Ordering information

OPTIMA® 240

<table>
<thead>
<tr>
<th>Length</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726089.30</td>
<td>726089.50</td>
<td>726089.60</td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726090.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726091.25</td>
<td>726091.30</td>
<td>726091.50</td>
<td>726091.60</td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>726095.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726096.30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® WAX polyethylene glycol 20 000 Da · USP G16

Key features
- Polar phase
- Structure see page 309

Recommended application
- Solvent analysis and alcohols, suitable for aqueous solutions

Temperature
- $T_{\text{max}} 240 °C$ (long-term temperature), $T_{\text{max}} 250 °C$ (short-term max. temperature in a temperature program)
- 0.53 mm ID: $T_{\text{max}} 220$ and $240 °C$ resp.

Similar phases
- PERMABOND® CW 20 M (see page 337), DB-Wax, Supelcowax, HP-Wax, HP-INNOWAX, Rtx-Wax, CP-Wax 52 CB, Stabilwax, 007-CW, BP20, AT-Wax, ZB-Wax

Modified Grob test
MN Appl. No. 211170

Column: OPTIMA® WAX, 50 m x 0.32 mm ID, 0.5 μm film
Injection: 1 μL, split 1:20
Carrier gas: 1.2 bar He
Temperature: 80 °C → 250 °C, 8 °C/min
Detector: FID 250 °C

Peaks:
1. Decane
2. Undecane
3. Octanol
4. Methyl decanoate
5. Dicyclohexylamine
6. Methyl undecanoate
7. Methyl dodecanoate
8. 2,6-Dimethylaniline
9. 2,6-Dimethylphenol

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® WAX</th>
<th>Length →</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.25 μm film</td>
<td>726600.25</td>
<td>726600.30</td>
<td>726600.50</td>
<td>726600.60</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>726321.25</td>
<td>726321.30</td>
<td>726321.50</td>
<td>726321.60</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726296.25</td>
<td>726296.30</td>
<td>726296.50</td>
<td>726296.60</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>1.00 μm film</td>
<td>726549.25</td>
<td>726549.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 μm film</td>
<td></td>
<td></td>
<td>726548.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® · polar capillary columns

OPTIMA WAXplus® cross-linked polyethylene glycol · USP G16

Key features
- Polar phase with improved cross-linking for lower column bleed and better temperature stability
- Structure see page 309

Recommended application
- Broad range of application, e.g., for solvents and alcohols, suitable for aqueous solutions

Temperature
- \(T_{\text{max}} \) 260 °C (long-term temperature), \(T_{\text{max}} \) 270 °C (short-term max. temperature in a temperature program)

Similar phases
- DB-Wax, Supelcowax, HP-Wax, HP-INNOWAX, Rtx-Wax, CP-Wax 52 CB, Stabilwax, 007-CW, BP20, AT-Wax, ZB-Wax

Alcohols

Column: OPTIMA WAXplus®, 30 m x 0.25 mm ID, 0.5 μm film
Injection: 0.1 μL, split 1:80
Carrier gas: 1.3 bar He
Temperature: 40 °C → 260 °C, 12 °C/min (15 min)
Detector: FID 260 °C

Peaks:
1. Methanol
2. 2-Propanol
3. Ethanol
4. 1-Propanol
5. 2-Methyl-1-propanol
6. 1-Butanol
7. 4-Methyl-2-pentanol
8. 1-Pentanol
9. 2-Methyl-1-pentanol
10. 1-Hexanol
11. Cyclohexanol
12. 1-Heptanol

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA WAXplus®</th>
<th>Length</th>
<th>30 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.25 μm film</td>
<td>726380.30</td>
<td>726380.60</td>
</tr>
<tr>
<td></td>
<td>0.50 μm film</td>
<td>726381.30</td>
<td>726381.60</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>726382.30</td>
<td>726382.60</td>
</tr>
<tr>
<td></td>
<td>0.50 μm film</td>
<td>726383.30</td>
<td>726383.60</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® · polar capillary columns

OPTIMA® FFAP polyethylene glycol 2-nitroterephthalate · USP G35 / close equivalent to USP G25

Key features
- Polar phase (FFAP = Free Fatty Acid Phase)
- Structure see page 309

Recommended application
- Fatty acid methyl esters (FAMES), free carboxylic acids

Temperature
- 0.10–0.32 mm ID:
 \(T_{\text{max}} 250 °C \) (long-term temperature),
 \(T_{\text{max}} 260 °C \) (short-term max. temperature in a temperature program)
- 0.53 mm ID: \(T_{\text{max}} 220 \) and 240 °C, resp.

Similar phases
- PERMABOND® FFAP (see page 338), DB-FFAP, HP-FFAP, CP-Wax 58 FFAP CB, 007-FFAP, CP-FFAP CB, Nukol™, AT-1000, SPB-1000, BP21, OV-351

FAME test
MN Appl. No. 211140

Column: OPTIMA® FFAP, 60 m x 0.32 mm ID, 0.25 μm film
Injection: 1.0 μL, 220 °C, split 1:40
Carrier gas: 1.2 bar He
Temperature: 55 °C → 250 °C, 6 °C/min
Detector: FID 220 °C

Peaks:
1. C4
2. C6
3. C8
4. C10
5. C12
6. C14
7. C16
8. C18
9. C18:1 cis/trans
10. C18:2
11. C18:3
12. C20
13. C22
14. C22:1
15. C24

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® FFAP</th>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726180.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.25 μm film</td>
<td>726116.25</td>
<td>726116.30</td>
<td>726116.50</td>
<td>726116.60</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>726341.25</td>
<td>726341.30</td>
<td>726341.50</td>
<td>726341.60</td>
<td></td>
</tr>
<tr>
<td>0.50 mm ID (0.8 mm OD)</td>
<td>0.50 μm film</td>
<td>726344.25</td>
<td>726344.30</td>
<td>726344.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>1.00 μm film</td>
<td>726346.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
OPTIMA® FFAPplus polyethylene glycol 2-nitrotetraphthalate · USP G35 / close equivalent to G25

Key features
- Polar phase
- Structure see page 309

Recommended application
- FAMEs, free carboxylic acids

Temperature
- T_{max} 250 °C (long-term temperature), T_{max} 260 °C (short-term max. temperature in a temperature program)

Similar phases
- DB-FFAP, HP-FFAP, CP-SIL 58 CB, 007-FFAP, CP-FFAP CB, Nukol™

FAMEs from biodiesel

Column: OPTIMA® FFAPplus, 30 m x 0.25 mm ID, 0.25 μm film
Injection: 1 μL, 260 °C, split 1:15
Carrier gas: 40 cm/s He
Temperature: 70 °C (1 min) → 240 °C, 30 °C/min (10 min)
Detector: MS-EI, ion source 200 °C, interface temperature 250 °C

Peaks:
- Methyl esters of:
 1. Caproic acid (C6:0)
 2. Caprylic acid (C8:0)
 3. Capric acid (C10:0)
 4. Lauric acid (C12:0)
 5. Myristic acid (C14:0)
 6. Palmitic acid (C16:0)
 7. Palmitoleic acid (C16:1)
 8. Stearic acid (C18:0)
 9. Oleic acid (C18:1 cis)
 10. Linoleic acid (C18:2 cis)
 11. Nonadecanoic acid (C19:0)
 12. Linolenic acid (C18:3)
 13. Arachidic acid (C20:0)
 14. Behenic acid (C22:0)
 15. Erucic acid (C22:1 cis)
 16. Lignoceric acid (C24:0)
 17. Nervonic acid (C24:1 cis)

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® FFAPplus Length</th>
<th>30 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726241.30</td>
<td>726241.60</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726242.30</td>
<td>726242.60</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>726243.30</td>
<td>726243.60</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726246.30</td>
<td>726246.60</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
PERMABOND® SE-30 100 % dimethylpolysiloxane · USP G1 / G2 / G38

Key features
- Nonpolar phase

Temperature
- T_{max} 300 °C (long-term temperature), T_{max} 320 °C (short-term max. temperature in a temperature program)

Similar phases
- OPTIMA® 1 (see page 310)

Ordering information

<table>
<thead>
<tr>
<th>Length</th>
<th>25 m</th>
<th>50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723052.25</td>
<td>723052.50</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723306.25</td>
<td>723308.50</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

PERMABOND® SE-52 5 % phenyl – 95 % dimethylpolysiloxane · USP G27

Key features
- Nonpolar phase

Temperature
- T_{max} 300 °C (long-term temperature), T_{max} 320 °C (short-term max. temperature in a temperature program)

Similar phases
- OPTIMA® 5 (see page 314)

Ordering information

<table>
<thead>
<tr>
<th>Length</th>
<th>25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723054.25</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723310.25</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>723312.25</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.
PERMABOND® CW 20 M polyethylene glycol 20 000 Dalton · USP G16

Key features
- Polar phase

Recommended application
- Solvent analysis and alcohols, suitable for aqueous solutions

Temperature
- 0.1–0.32 mm ID: T_{max} 220 °C (long-term temperature), T_{max} 240 °C (short-term max. temperature in a temperature program)
- 0.53 mm ID: T_{max} 200 and 220 °C, resp.

Similar phases
- See OPTIMA® WAX (see page 332)

Ordering information

<table>
<thead>
<tr>
<th>PERMABOND® CW 20 M</th>
<th>Length →</th>
<th>10 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>723064.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>723060.10</td>
<td>723060.25</td>
<td>723060.30</td>
<td>723060.50</td>
<td>723060.60</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>723321.10</td>
<td>723321.25</td>
<td>723321.30</td>
<td>723321.50</td>
<td>723321.60</td>
</tr>
<tr>
<td>0.35 μm film</td>
<td>723827.10</td>
<td>723827.25</td>
<td>723827.50</td>
<td>723827.50</td>
<td>723827.50</td>
<td>723827.50</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>72296.10</td>
<td>72296.25</td>
<td>72296.30</td>
<td>72296.50</td>
<td>72296.60</td>
<td>72296.60</td>
</tr>
<tr>
<td>0.33 mm ID (0.8 mm OD)</td>
<td>0.50 μm film</td>
<td>723515.10</td>
<td>723515.25</td>
<td>723515.25</td>
<td>723515.25</td>
<td>723515.25</td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>723549.10</td>
<td>723549.25</td>
<td>723549.30</td>
<td>723549.30</td>
<td>723549.30</td>
<td>723549.30</td>
</tr>
<tr>
<td>2.00 μm film</td>
<td>723517.10</td>
<td>723517.25</td>
<td>723517.25</td>
<td>723517.25</td>
<td>723517.25</td>
<td>723517.25</td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
PERMABOND® capillary columns

PERMABOND® FFAP polyethylene glycol 2-nitrotetraphthalate · USP G35 / close equivalent to G25

Key features
· Polar phase

Recommended application
· FAMEs, free carboxylic acids

Temperature
· 0.1–0.32 mm ID: T_{max} 220 °C (long-term temperature), T_{max} 240 °C (short-term max. temperature in a temperature program)
· 0.53 mm ID: T_{max} 200 and 220 °C, resp.

Similar phases
· See OPTIMA® FFAP (see page 334)

Ordering information

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>20 m</th>
<th>25 m</th>
<th>30 m</th>
<th>50 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>723180.10</td>
<td>723180.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>723181.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>723116.10</td>
<td>723116.25</td>
<td>723116.30</td>
<td>723116.50</td>
<td>723116.60</td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>723116.10</td>
<td>723116.25</td>
<td>723116.30</td>
<td>723116.50</td>
<td>723116.60</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>723344.10</td>
<td>723344.25</td>
<td>723344.30</td>
<td>723344.50</td>
<td>723344.60</td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>723344.10</td>
<td>723344.25</td>
<td>723344.30</td>
<td>723344.50</td>
<td>723344.60</td>
<td></td>
</tr>
<tr>
<td>0.35 mm ID (0.8 mm OD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 μm film</td>
<td>723555.10</td>
<td>723555.25</td>
<td>723555.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program we will be happy to supply columns custom-made to your specifications. Information about scope of delivery, special cages and integrated guard columns see additional information for GC columns on page 303.

Further applications can be found online in our application database at www.mn-net.com/apps
Capillary columns for special GC separations

Certain analytical separations can be accomplished more easily with chromatographic columns, that have been especially developed for that task, compared with standard columns. The following table summarizes our program of GC speciality capillaries, the individual columns will be described in detail on the following pages.

| Overview |
|------------------|------------------|
| Separation/special application | Recommended capillary column | Page |
| **Fast GC column with 0.10 mm ID** | OPTIMA® 1, OPTIMA® 5, OPTIMA® δ-3, OPTIMA® δ-6 | 340 |
| | OPTIMA® 17, OPTIMA® 225, OPTIMA® FFAP | 340 |
| | PERMABOND® CW 20 M, PERMABOND® FFAP | 340 |
| **Enantiomer separation cyclodextrin phases** | FS-LIPODEX® A, FS-LIPODEX® B, FS-LIPODEX® C | 342 |
| | FS-LIPODEX® D, FS-LIPODEX® E, FS-LIPODEX® G | 342 |
| | FS-HYDRODEX β-PM, FS-HYDRODEX β-3 P, FS-HYDRODEX β-6TBDM, FS-HYDRODEX β-6TBDE, FS-HYDRODEX β-6TBDE, FS-HYDRODEX β-TBDAc, FS-HYDRODEX γ-DiMOM | 344 |
| **Biodiesel** | OPTIMA® BioDiesel M | 346 |
| Methanol analysis | OPTIMA® BioDiesel F | 346 |
| FAME analysis | OPTIMA® BioDiesel G | 346 |
| **Glycerol and triglycerides** | OPTIMA® 1-TG | 348 |
| | OPTIMA® 17-TG | 348 |
| **Triglycerides** | OPTIMA® 5 HT | 349 |
| **High temperature GC** | OPTIMA® 5 HT | 349 |
| **Amines** | OPTIMA® 5 Amine | 350 |
| Polyfunctional amines | FS-CW 20 M-AM | 351 |
| Amine separations | PERMABOND® P-100 | 352 |
| **Petrochemical products (complex hydrocarbon mixtures)** | PERMABOND® SE-54 HKW | 352 |
| **Environmental analysis of volatile halogenated hydrocarbons** | PERMABOND® Silane | 354 |
| **Silanes (monomeric, e.g., chlorosilanes)** | PERMABOND® CW 20 M-DEG | 354 |
| **Diethylene glycol, e.g., for the quality control of wine** |
Capillary columns for Fast GC

Fast GC

Key features

- Decreased column diameters, high heating rates and decreased column lengths for faster GC separations with high resolution efficiency
- Small inner diameters combined with very fast temperature programs can reduce the analysis time by up to 80%.
- High sensitivity detectors with small volume and very short response time, as well as very rapid data acquisition and processing

Temperature

- High heating rates place special demands on stationary phases. OPTIMA® columns meet exactly this requirement: very low bleeding, long lifetimes, even for continuous high heating rates.

Comparison of a separation on a 50 m standard capillary with separation on a 10 m fast GC column

MN Appl. No. 211260

Peaks:

1. Octanol
2. Undecane
3. Dimethylaniline
4. Dodecane
5. Decylamine
6. Methyl decanoate
7. Methyl undecanoate
8. Henicosane
9. Docosane
10. Tricosane

A) Fast GC column

- Column: OPTIMA® 5, 10 m x 0.1 mm ID, 0.1 μm film
- Injection 1 μL, split 1:40.
- Carrier gas 0.75 bar He

B) standard GC column

- Column: OPTIMA® 5, 50 m x 0.25 mm ID, 0.25 μm film
- Injection 1 μL, split 1:35.
- Carrier gas 1.5 bar He

Both separations:

- Temperature: 80 °C → 320 °C (10 min), 8 °C/min
- Detector: FID

While maintaining the temperature program and halving the pressure a time saving of 30% results with identical separation efficiency.
Capillary columns for Fast GC

Ordering information

Columns for Fast GC

<table>
<thead>
<tr>
<th>Phase</th>
<th>Maximum temperature</th>
<th>ID [mm]</th>
<th>Film thickness [μm]</th>
<th>REF (10 m)</th>
<th>REF (20 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMA® 1</td>
<td>340 / 360 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726024.10</td>
<td>726024.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td>0.40</td>
<td>726025.20</td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 5</td>
<td>340 / 360 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726846.10</td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 5-3</td>
<td>340 / 360 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726410.10</td>
<td>726410.20</td>
</tr>
<tr>
<td>OPTIMA® 5-6</td>
<td>340 / 360 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726490.10</td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 17</td>
<td>320 / 340 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726848.10</td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 225</td>
<td>260 / 280 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726080.10</td>
<td></td>
</tr>
<tr>
<td>OPTIMA® FFAP</td>
<td>250 / 260 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>726180.10</td>
<td></td>
</tr>
<tr>
<td>PERMABOND® CW 20 M</td>
<td>220 / 240 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>723064.10</td>
<td></td>
</tr>
<tr>
<td>PERMABOND® FFAP</td>
<td>220 / 240 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>723180.10</td>
<td>723180.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td>0.25</td>
<td>723181.10</td>
<td></td>
</tr>
<tr>
<td>OPTIMA® 5 Amine</td>
<td>300 / 320 °C</td>
<td>0.10</td>
<td>0.40</td>
<td>726361.10</td>
<td></td>
</tr>
<tr>
<td>FS-CW 20 M-AM</td>
<td>220 / 240 °C</td>
<td>0.10</td>
<td>0.25</td>
<td>733111.10</td>
<td></td>
</tr>
<tr>
<td>FS-LIPODEX® E</td>
<td>200 / 220 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>723382.10</td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX β-6TBDM</td>
<td>230 / 250 °C</td>
<td>0.10</td>
<td>0.10</td>
<td>723383.10</td>
<td></td>
</tr>
</tbody>
</table>

In addition to this standard program, all MN GC phases can be custom-made as fast GC columns.

Further applications can be found online in our application database at www.mn-net.com/apps
Capillary columns for enantiomer separation

LIPODEX® cyclodextrin phases for enantiomer separation

Key features

- **Base material:** cyclic oligosaccharides consisting of six (α-cyclodextrin), seven (β-cyclodextrin) or eight (γ-cyclodextrin) glucose units bonded through 1,4-linkages

- **Regioselective alkylation and / or acylation of the hydroxyl groups leads to lipophilic phases with varying enantioselectivity, which are well suited for GC enantiomer analysis**

- **Important advantage:** many compounds can be analyzed without derivatization (however, for certain substances enantioselectivity can be favorably influenced by formation of derivatives)

Recommended application

- **A large number of separations have been achieved, however, it is not possible to make a general prediction, which phase could solve a given separation task. Even for compounds with small structural differences or within homologous series the enantiodifferentiation can be quite different. The following table shows typical applications.**

Note:

- Water as solvent is strictly forbidden for all cyclodextrin phases
- Dry the sample with our CHROMAFIX® Dry (Na₂SO₄) cartridges (see page 61)
- Use suitable nonpolar solvent

Phase	**Cyclodextrin derivatate**	**T_{max} [°C]**	**Recommended application**
LIPODEX® A | hexakis-(2,3,6-tri-O-pentyl)-α-CD | 200 / 220 | carbohydrates, polyols, diols, hydroxycarboxylic acid esters, (epoxy-) alcohols, glycerol derivatives, spiroacetals, ketones, alkyl halides
LIPODEX® B | hexakis-(2,6-di-O-pentyl-3-O-acetyl)-α-CD | 200 / 220 | lactones, diols (cyclic carbonates), aminols, aldols (O-TFA), glycerol derivatives (cyclic carbonates)
LIPODEX® C | heptakis-(2,3,6-tri-O-pentyl)-β-CD | 200 / 220 | Alcohols, cyanhydrins, olefins, hydroxyacid esters, alkyl halides
LIPODEX® D | heptakis-(2,6-di-O-pentyl-3-O-acetyl)-β-CD | 200 / 220 | aminols (TFA), β-amino acid esters, trans-cycloalkane-1,2-diols, trans-cycloalkane-1,2-diols, trans-cycloalkane-1,3-diols (TFA)
LIPODEX® E | octakis-(2,6-di-O-pentyl-3-O-butyryl)-γ-CD | 200 / 220 | α-amino acids, α- and β-hydroxyacid esters, alcohols (TFA), diols (TFA), ketones, pheromones (cyclic acetals), amines, alkyl halides, lactones
LIPODEX® G | octakis-(2,3-di-O-pentyl-6-O-methyl)-γ-CD | 220 / 240 | menthol isomers, ketones, alcohols, carboxylic acid esters, terpenes

Ordering information

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
<th>50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ 0.10 mm ID</td>
<td>0.25 mm ID</td>
<td>0.25 mm ID</td>
<td>0.25 mm ID</td>
</tr>
<tr>
<td>FS-LIPODEX® A</td>
<td>723360.25</td>
<td>723360.50</td>
<td>723360.50</td>
</tr>
<tr>
<td>FS-LIPODEX® B</td>
<td>723362.25</td>
<td>723362.50</td>
<td>723362.50</td>
</tr>
<tr>
<td>FS-LIPODEX® C</td>
<td>723364.25</td>
<td>723364.50</td>
<td>723364.50</td>
</tr>
<tr>
<td>FS-LIPODEX® D</td>
<td>723366.25</td>
<td>723366.50</td>
<td>723366.50</td>
</tr>
<tr>
<td>FS-LIPODEX® E</td>
<td>723382.10</td>
<td>723368.25</td>
<td>723368.50</td>
</tr>
<tr>
<td>FS-LIPODEX® G</td>
<td>723379.25</td>
<td>723379.50</td>
<td>723379.50</td>
</tr>
</tbody>
</table>

All columns with 0.4 mm OD
Capillary columns for enantiomer separation

Enantiomer separation of amino acid methyl esters (TFA)

Column: FS-LIPODEX® E, 25 m x 0.25 mm ID
Injection: 1 μL, split ~ 1: 100
Carrier gas: 60 kPa H₂
Temperature: 90 → 190 °C, 4 °C/min
Detector: FID 250 °C

Peaks:
(D is eluted before L except for proline: L before D)
1. Alanine
2. Valine
3. Leucine
4. Proline
5. Aspartic acid
6. Phenylalanine

Separation of chiral constituents of peppermint oil

Column: FS-LIPODEX® G, 25 m x 0.25 mm ID
Carrier gas: 50 kPa H₂
Temperature: 75 °C, isothermal
Detector: FID

Peaks:
1. (+)-trans-Sabinene hydrate
2. (+)-Menthone
3. (+)-Isomenthone
4. (-)-Menthone
5. (-)-Isomenthone
6. (+)-Menthofuran
7. (-)-Isopulegol
8. (-)-Menthyl acetate
9. (+)-Pulegone
10. (+)-Neomenthol
11. (-)-Neomenthol
12. (+)-Neoisomenthol
13. (+)-Menthol
14. (-)-Neoisomenthol
15. (+)-Piperitone
16. (-)-Isodol
17. (+)-Isomenthol
18. (-)-Isomenthol

Further applications can be found online in our application database at www.mn-net.com/apps
Capillary columns for enantiomer separation

HYDRODEX cyclodextrin phases for enantiomer separation

Recommended application

- Cyclodextrin derivatives (see page 343) with high melting point: for GC enantiomer separation diluted with polysiloxanes

Enantiomer separation of dichlorprop methyl ester

MN Appl. No. 202542

- **Column**: FS-HYDRODEX β-3P, 25 m x 0.25 mm ID
- **Injection**: 0.1 μL (~1 % in CH2Cl2), split 130 mL/min
- **Carrier gas**: 60 kPa H2 (1.9 mL/min)
- **Temperature**: 160 °C
- **Detector**: FID 250 °C

![Graph](image)

Separation of isomeric antiinflammatory drugs

MN Appl. No. 210150

- **Column**: FS-HYDRODEX β-6TBDM, 25 m x 0.25 mm ID
- **Carrier gas**: He
- **Temperature**: 135 °C → 200 °C, 1 °C/min
- **Detector**: FID

Peaks:
1. Ibuprofen
2. Flurbiprofen
3. Fenoprofen
4. Naproxen
5. Ketoprofen

![Graph](image)

Phase Selection

<table>
<thead>
<tr>
<th>Phase</th>
<th>Cyclodextrin derivative (diluted with optimized polysiloxane)</th>
<th>Tmax [°C]</th>
<th>Recommended application</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDRODEX β-PM</td>
<td>heptakis-(2,3,6-tri-O-methyl)-β-CD</td>
<td>230/250</td>
<td>hydroxycarboxylic acid esters, alcohols, diols, olefins, lactones, acetals</td>
</tr>
<tr>
<td>HYDRODEX β-3P</td>
<td>heptakis-(2,6-di-O-methyl-3-O-pentyl)-β-CD</td>
<td>230/250</td>
<td>terpenes, dienes, allenes, terpene alcohols, 1,2-epoxyalkanes, carboxylic acids (esters), hydroxycarboxylic acid esters, pharmaceuticals, pesticides</td>
</tr>
<tr>
<td>HYDRODEX β-6TBDM</td>
<td>heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-β-CD</td>
<td>230/250</td>
<td>γ-lactones, cyclopentanones, terpenes, esters, tartrates</td>
</tr>
<tr>
<td>HYDRODEX β-6TBE</td>
<td>heptakis-(2,3-di-O-ethyl-6-O-t-butyldimethyl-silyl)-β-CD</td>
<td>230/250</td>
<td>essential oils</td>
</tr>
<tr>
<td>HYDRODEX β-TBDAc</td>
<td>heptakis-(2,3-di-O-acetyl-6-O-t-butyldimethyl-silyl)-β-CD</td>
<td>220/240</td>
<td>alcohols, esters, ketones, aldehydes, δ-lactones</td>
</tr>
<tr>
<td>HYDRODEX γ-TBDAc</td>
<td>octakis-(2,3-di-O-acetyl-6-O-t-butyldimethyl-silyl)-γ-CD</td>
<td>220/240</td>
<td>cyclic ketones, aromatic ketones, oxiranes, aromatic esters, aromatic amides</td>
</tr>
<tr>
<td>HYDRODEX γ-DIMOM</td>
<td>octakis-(2,3-di-O-methoxymethyl-6-O-t-butyldimethyl-silyl)-γ-CD</td>
<td>220/240</td>
<td>ketones, terpenes, cyclic ethers, alcohols, amines</td>
</tr>
</tbody>
</table>
Capillary columns for enantiomer separation

Separation of (R/S) citronellol + citronellal

MN Appl. No. 212440

- **Column:** FS-HYDRODEX β-TBDAc, 50 m x 0.25 mm ID
- **Injection:** 1 μL, 1:1000 in CH₂Cl₂, split 25 mL/min
- **Carrier gas:** 1.5 bar H₂
- **Temperature:** 100 °C
- **Detector:** FID 220 °C

Peaks:
1. (R)/(S)-Citronellal
2. (S)/(R)-Citronellal
3. (S)-Citronellol
4. (R)-Citronellol

Separation of essential oils

MN Appl. No. 212980 / 212990 / 213000

- **Column:** FS-HYDRODEX γ-TBDAc, 50 m x 0.25 mm ID
- **Injection:** 220 °C
- **Carrier gas:** 1.2 bar H₂
- **Temperature:** 125 °C
- **Detector:** FID 220 °C

Peaks:
1. Fenchone (1.5 mg/mL)
2. Menthone (0.5 mg/mL)
3. Menthol (2 mg/mL)

Ordering information

<table>
<thead>
<tr>
<th>HYDRODEX</th>
<th>Length</th>
<th>10 m 0.10 mm ID</th>
<th>25 m 0.25 mm ID</th>
<th>50 m 0.25 mm ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-HYDRODEX β-PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX β-3P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX β-6TBDM</td>
<td></td>
<td>723383.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX β-6TBDE</td>
<td></td>
<td>723381.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX β-TBDAc</td>
<td></td>
<td>723386.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX γ-TBDAc</td>
<td></td>
<td>723384.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-HYDRODEX γ-DiMOM</td>
<td></td>
<td>723388.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All columns with 0.4 mm OD

Further applications can be found online in our application database at www.mn-net.com/apps
OPTIMA® BioDiesel for the analysis of biodiesel (DIN EN 14214 / ASTM D 6751)

OPTIMA® BioDiesel M for analysis of methanol in accordance with DIN EN 14110

<table>
<thead>
<tr>
<th>Key features</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The methanol content in biodiesel as specified in DIN EN 14110 must not exceed 0.2 %. The column OPTIMA® BioDiesel M allows the GC headspace analysis of the methanol content in biodiesel in the concentration range from 0.01 to 0.5 % with 2-propanol as internal standard.</td>
<td>• T_{max} 340 °C (long-term temperature),T_{max} 360 °C (short-term max. temperature in a temperature program)</td>
</tr>
</tbody>
</table>

Similar phases

• Select™ Biodiesel for Methanol, Trace TR-BioDiesel (M)

OPTIMA® BioDiesel F for analysis of FAMEs in accordance with DIN EN 14103:2011

<table>
<thead>
<tr>
<th>Key features</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The analysis of biodiesel requires separation of typical FAMEs between myristic acid (C${14}$) and nervonic acid (C${24}$:1) methyl esters. This analysis is possible on OPTIMA® BioDiesel F in only 22 min. Additionally, linolenic acid methyl ester can be determined due to the good resolution. The extended standard DIN EN 14103:2011 also covers smaller FAMEs starting from C${8}$ (see application 214510 on opposite page). Change of the internal standard from C${17}$ to C$_{19}$ also allows the analysis of animal fats.</td>
<td>• T_{max} 240 °C (long-term temperature),T_{max} 250 °C (short-term max. temperature in a temperature program)</td>
</tr>
</tbody>
</table>

Similar phases

• Select™ Biodiesel for FAME, Trace TR-BioDiesel (F)

OPTIMA® BioDiesel G for analysis of glycerol and glycerides in accordance with DIN EN 14105

<table>
<thead>
<tr>
<th>Key features</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The capillary column OPTIMA® BioDiesel G allows determination of free glycerol and residues of mono-, di- and triglycerides in FAMEs intended as additives for mineral oils. The procedure can be applied for FAMEs from rapeseed oil, sunflower oil and soy bean oil. Glycerol as well as mono- and diglycerides are derivatized to more volatile substances by addition of MSTFA in the presence of pyridine (see page 363).</td>
<td>• T_{max} 380 °C (long-term temperature),T_{max} 400 °C (short-term max. temperature in a temperature program)</td>
</tr>
</tbody>
</table>

Similar phases

• Select™ Biodiesel for Glycerides, Trace TR-BioDiesel (G), MET-Biodiesel
Capillary columns for biodiesel analysis

Analysis of FAMEs from biodiesel in accordance with DIN EN 14103:2011

MN Appl. No. 214510

Column: OPTIMA® BioDiesel F, 30 m x 0.25 mm ID
Sample: 50 μg/mL each in dichloromethane
Injection: 10 μL, 250 °C, split 1:20
Carrier gas: 1.2 bar He
Temperature: 80 °C → 250 °C (8.5 min), 20 °C/min
Detector: FID 260 °C

Peaks:
1. C6:0
2. C8:0
3. C10:0
4. C12:0
5. C14:0
6. C16:0
7. C16:1
8. C18:0
9. C18:1
10. C18:2
11. C19:0, int. st.
12. C18:3
13. C20:0
14. C22:0
15. C22:1
16. C24:0

Analysis of glycerol and glycerides from biodiesel

MN Appl. No. 213640

Column: OPTIMA® BioDiesel G, 10 m x 0.25 mm ID
Sample:
A) standard in n-heptane
B) biodiesel
Injection: 2 μL, 350 °C, CIS (15 °C → 350 °C, 12 °C/s)
Carrier gas: 0.8 bar H₂, split 1:2.6
Temperature: 50 °C (3.5 min) → 180 °C, 16 °C/min
 → 280 °C, 7 °C/min
 → 370 °C (10 min), 10 °C/min
Detector: FID 380 °C

Peaks:
1. Glycerol (TMS)
2. Butanetriol (TMS), IS
3. Monolein = glycerol monooleate (TMS)
 + monoacylglycerides
4. Tricaprin (glycerol tricaproate), IS
5. Diolein = glycerol dioleate (TMS)
 + diacylglycerides
6. Triolein = glycerol trioleate
 + triacylglycerides

Ordering information

OPTIMA® BioDiesel

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>30 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMA® BioDiesel M</td>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>726905.30</td>
</tr>
<tr>
<td>OPTIMA® BioDiesel F</td>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726900.30</td>
</tr>
<tr>
<td>OPTIMA® BioDiesel G</td>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726903.10</td>
</tr>
</tbody>
</table>
Capillary columns for triglyceride analysis

OPTIMA® 1-TG · 17-TG for triglyceride analysis · USP G1 / G2 / G38 (1-TG) · USP G3 (17-TG)

Key features
- Short capillary columns (max. 25 m and 0.32 mm ID) with low-bleeding stationary phases thermally stable with optimized deactivation

Recommended application
- **OPTIMA® 1-TG**
 - 100% dimethylpolysiloxane offers separation according to carbon number
- **OPTIMA® 17-TG**
 - Phenyl-methyl-polysiloxane (50% phenyl) for separation according to degree of unsaturation

Temperature
- T_{max} 370 °C (both phases)

Similar phases der OPTIMA® 1-TG:
- SPB-1 TG, DB-1 HT, 400-1 HT, HT-5

Triglycerides (from butter)
MN Appl. No. 201790

Column: OPTIMA® 1-TG, 25 m x 0.32 mm ID
Injection: 0.5 μL
Carrier gas: 80 kPa H₂
Temperature: 80 °C (1 min) → 250 °C, 20 °C/min → 370 °C (10 min), 5 °C/min
Detector: FID 380 °C

Peaks:
1. Cholesterol
2. T-30
3. T-34
4. T-38
5. T-42
6. T-46
7. T-50
8. T-54

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 1-TG · OPTIMA® 17-TG</th>
<th>Length →</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 m</td>
</tr>
<tr>
<td>OPTIMA® 1-TG</td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>726133.10</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>726132.10</td>
</tr>
<tr>
<td>OPTIMA® 17-TG</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>726131.10</td>
</tr>
</tbody>
</table>
Capillary columns for high temperature GC

OPTIMA® 5 HT for high temperature GC · USP G27 / G36

Key features
- Chemically bonded, cross-linked silarylene phase with polarity similar to a 5 % diphenyl - 95 % dimethylpolysiloxane phase
- Nonpolar phase, low bleeding

Recommended application
- Ideal for MS detectors, can be rinsed with solvents
- For simulated distillation, hydrocarbon, fuel and oil analysis, high-boiling analytes

Similar phases
- DB-5HT, VF-5HT, HT-5, XTI-5HT, ZB-5HT

Temperature
- T_{max} 380 °C (long-term temperature), T_{max} 400 °C (short-term max. temperature in a temperature program)

Separation of motor oil / mineral oil (type A + B), rapid determination in accordance with DIN H-53 / ISO DIS

MN Appl. No. 213400

<table>
<thead>
<tr>
<th>Column:</th>
<th>OPTIMA® 5 HT, 15 m x 0.32 mm ID, 0.25 μm film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>mineral oil type A + B (hydrocarbon index kit acc. to EN ISO 9377-2) in hexane</td>
</tr>
<tr>
<td>Injection:</td>
<td>1 μL, splitless, 300 °C</td>
</tr>
<tr>
<td>Carrier gas:</td>
<td>0.6 bar He</td>
</tr>
<tr>
<td>Temperature:</td>
<td>40 °C (5 min) → 390 °C, 50 °C/min</td>
</tr>
<tr>
<td>Detector:</td>
<td>FID 280 °C</td>
</tr>
</tbody>
</table>

Peaks:
1. Decane (C10)
2. Tetracontane (C40)

Ordering information

<table>
<thead>
<tr>
<th>OPTIMA® 5 HT</th>
<th>Length</th>
<th>15 m</th>
<th>30 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.10 μm film</td>
<td>726102.15</td>
<td>726102.30</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726106.15</td>
<td>726106.30</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.10 μm film</td>
<td>726104.15</td>
<td>726104.30</td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726108.15</td>
<td>726108.30</td>
<td></td>
</tr>
</tbody>
</table>

Further applications can be found online in our application database at www.mn-net.com/apps
Capillary columns for amine separation

OPTIMA® 5 Amine special column for analysis of amines - USP G27 / G36

Key features
- Nonpolar phase
- Improved linearity for analysis of active components at trace levels: no amine absorptions even for aliphatic and aromatic amines at concentrations of 100 pg/peak
- Tested with the OPTIMA® Amine test mixture (REF 722317), which contains, amongst others, diethanolamine and propanol-pyridine (this test mixture is supplied with each column)

Recommended application
- Especially deactivated for the analysis of polyfunctional amines such as ethanolamines, amino-functionalized diols and similar compounds, which are important base materials in industrial chemistry, and show strong tailing on standard-deactivated columns

Temperature
- Tmax 300 °C (long-term temperature), Tmax 320 °C (short-term max. temperature in a temperature program)

Similar phases
- Rtx®-5 Amine, PTA-5

Separation of secondary and tertiary amines
MN Appl. No. 210280

Column: OPTIMA® 5 Amine, 30 m x 0.25 mm ID, 1.0 μm film
Injection: 1 μL, split 1:100
Carrier gas: 0.6 bar H₂
Temperature: 100 °C (3 min) → 280 °C, 10 °C/min
Detector: FID 280 °C

Peaks:
1. Diethylamine
2. Di-isopropylamine
3. Triethylamine
4. Di-n-propylamine
5. Di-n-butylamine
6. Tri-n-propylamine
7. Di-isobutylamine
8. Tri-n-butylamine
9. Di-isohexylamine
10. Dicyclohexylamine
11. Dibenzylamine
12. Tri-n-hexylamine

Ordering information

OPTIMA® 5 Amine

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
<th>30 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td>0.40 μm film</td>
<td>726361.10</td>
<td></td>
</tr>
<tr>
<td>0.2 mm ID (0.4 mm OD)</td>
<td>0.35 μm film</td>
<td>726355.25</td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>0.50 μm film</td>
<td>726354.30</td>
<td></td>
</tr>
<tr>
<td>0.50 μm film</td>
<td>726358.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>0.25 μm film</td>
<td>726360.30</td>
<td></td>
</tr>
<tr>
<td>0.25 μm film</td>
<td>726353.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 μm film</td>
<td>726356.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50 μm film</td>
<td>726359.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>1.00 μm film</td>
<td>726357.30</td>
<td></td>
</tr>
<tr>
<td>3.00 μm film</td>
<td>726359.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Capillary columns for amine separation

FS-CW 20 M-AM polyethylene glycol 20 000, non-immobilized · USP G16

Key features
- Polyethylene glycol, basic for amine separations

Temperature
- \(T_{\text{max}} \) 220 °C (long-term temperature),
- \(T_{\text{max}} \) 240 °C (short-term max. temperature in a temperature program)

Similar phases
- Carbowax™ Amine, CP-Wax 51, CAM, Stabilwax® DB

Ordering information
FS-CW 20 M-AM

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
<th>50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 (\mu)m film</td>
<td>733111.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 (\mu)m film</td>
<td>733110.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 (\mu)m film</td>
<td>733299.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35 (\mu)m film</td>
<td>733442.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 (\mu)m film</td>
<td>733551.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further applications can be found online in our application database at www.mn-net.com/apps

MACHEREY-NAGEL
CHROMAFIL® syringe filters

Ideal for the filtration of GC, HPLC and UHPLC sample solutions
- Diverse membrane types and filter sizes for a variety of applications
- Optimal flow geometry because of star-shaped distribution device
- Lowest content of extractable substances
- Luer lock inlet, Luer outlet
- Prefiltration of solvents protects sensitive instrument parts and chromatography columns from solid contamination and increases their lifetime.

Find CHROMAFIL® products from page 81 onwards.
Capillary columns for hydrocarbons

PERMABOND® P-100 for analysis of petrochemical products - USP G1/G2/G38

- **Key features**
 - Extra long column with nonpolar dimethylpolysiloxane phase

- **Recommended application**
 - High resolution and sufficient capacity for analysis of complex mixtures of hydrocarbons

- **Temperature**
 - T_{max} 300 °C (long-term temperature),
 - T_{max} 320 °C (short-term max. temperature in a temperature program)

Ordering information

<table>
<thead>
<tr>
<th>PERMABOND® P-100</th>
<th>Length → 100 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723890.100</td>
</tr>
<tr>
<td>0.50 μm film</td>
<td></td>
</tr>
</tbody>
</table>

PERMABOND® SE-54-HKW for volatile halogenated hydrocarbons - USP G36

- **Recommended application**
 - SE-54 optimized for volatile halogenated hydrocarbons

- **Temperature**
 - T_{max} 300 °C (long-term temperature),
 - T_{max} 320 °C (short-term max. temperature in a temperature program)

For the analysis of halogenated hydrocarbons, we recommend our optimized column PERMABOND® SE-54-HKW at 25 or 50 m length with our approved polysiloxane phase SE-54.

As an alternative, or to verify analytical results, the OPTIMA® 624 has proven itself as advantageous, especially for the determination of 1,1,2-trichlorotrifluoroethane (F 113) along with dichloromethane.

Both phases are also suited for the determination of vinyl chloride as well as for the separation of cis/trans isomers of 1,2-dichloroethene. The high film thickness secures a high capacity and an outstanding resolution. For GC/MS coupling, we recommend OPTIMA® 624 LB or OPTIMA® 624 with 0.2 or 0.25 mm ID.

Volatile halogenated hydrocarbons

MN Appl. No. 212480

<table>
<thead>
<tr>
<th>Peak</th>
<th>Concentration (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dichloromethane</td>
<td>795</td>
</tr>
<tr>
<td>2. Trichloromethane</td>
<td>75</td>
</tr>
<tr>
<td>3. 1,1,1-Trichloroethane</td>
<td>67</td>
</tr>
<tr>
<td>4. 1,2-Dichloroethane</td>
<td>100</td>
</tr>
<tr>
<td>5. Tetrachloromethane</td>
<td>15.9</td>
</tr>
<tr>
<td>6. Trichloroethene</td>
<td>14.6</td>
</tr>
<tr>
<td>7. Bromodichloromethane</td>
<td>20</td>
</tr>
<tr>
<td>8. Dibromochloromethane</td>
<td>122</td>
</tr>
<tr>
<td>9. Tetrachloroethene</td>
<td>81</td>
</tr>
<tr>
<td>10. Tribromomethane</td>
<td>28.9</td>
</tr>
</tbody>
</table>

Column: PERMABOND® SE-54-HKW, 50 m x 0.32 mm ID
Injection: 1 μL, split ~ 1:30
Carrier gas: 0.9 bar He
Temperature: 35 °C (25 min) → 160 °C (5 min), 10 °C/min
Detector: ECD 300 °C

Peaks:
1. Dichloromethane (795 ng/mL)
2. Trichloromethane (75 ng/mL)
3. 1,1,1-Trichloroethane (67 ng/mL)
4. 1,2-Dichloroethane (100 ng/mL)
5. Tetrachloromethane (15.9 ng/mL)
6. Trichloroethene (14.6 ng/mL)
7. Bromodichloromethane (20 ng/mL)
8. Dibromochloromethane (122 ng/mL)
9. Tetrachloroethene (81 ng/mL)
10. Tribromomethane (28.9 ng/mL)
Capillary columns for hydrocarbons

Volatile halogenated hydrocarbons and BTX
MN Appl. No. 200160

Column: OPTIMA® 624, 50 m x 0.25 mm ID, 1.40 μm film
Injection: 1 μL, split 50 mL/min
Carrier gas: 0.9 mL/min He (constant flow)
Temperature: 40 °C (5 min) → 160 °C, 10 °C/min
Detector: MSD 5971

Peaks:
1. Vinyl chloride
2. Trichlorofluoromethane (F 11)
3. Pentane
4. 1,1,2-Trichlorotrifluoroethane
5. Dichloromethane
6. trans-1,2-Dichloroethene
7. Hexane
8. cis-1,2-Dichloroethene
9. Trichloromethane
10. 1,1,1-Trichloroethane
11. Tetrachloromethane
12. 1,2-Dichloroethane + benzene
13. Trichloroethene
14. Bromodichloromethane
15. Toluene
16. Tetrachloroethene
17. Dibromochloromethane
18. Chlorobenzene
19. Ethylbenzene
20. m- + p-Xylene
21. o-Xylene
22. Tribromomethane
23. Bromobenzene

Ordering information
PERMABOND® SE-54-HKW

<table>
<thead>
<tr>
<th>Length</th>
<th>25 m</th>
<th>50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723945.25</td>
<td>723945.50</td>
</tr>
<tr>
<td>1.80 μm film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further applications can be found online in our application database at www.mn-net.com/apps
Capillary columns for silane · DEG

PERMABOND® Silane for silane analysis

- **Recommended application**
 - Developed especially for the analysis of monomeric silanes and chlorosilanes (not for the separation of trimethylsilyl derivatives)
 - Also suited for the separation of dimeric siloxanes and silazanes

- **Temperature**
 - 0.32 mm ID: T_{max} 260 °C (long-term temperature), T_{max} 280 °C (short-term max. temperature in a temperature program)
 - 0.53 mm ID: T_{max} 240 and 260 °C, resp.

Ordering information

PERMABOND® Silane

<table>
<thead>
<tr>
<th>Length →</th>
<th>25 m</th>
<th>50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723409.50</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723411.25</td>
<td></td>
</tr>
</tbody>
</table>

Chloromethylsilanes

- MN Appl. No. 200090
- Column: PERMABOND® Silane, 50 m x 0.32 mm ID
- Injection: 0.5 μL gas, split 80 mL/min
- Carrier gas: 1 mL/min He (constant flow)
- Temperature: 50 °C → 100 °C, 5 °C/min
- Detector: MSD 5971

Peaks:
1. Tetramethylsilane
2. Dichloromethane
3. Tetrachlorosilane
4. Chlorotrimethylsilane
5. Methyltrichlorosilane
6. Dichlorodimethylsilane
7. Hexamethyldisiloxane

Diethylene glycol standard in wine

- MN Appl. No. 201500
- Column: PERMABOND® CW 20 M-DEG, 25 m x 0.25 mm ID
- Injection: 0.5 μL, split ~1:40
- Carrier gas: 1.2 bar N₂
- Temperature: 80 °C → 200 °C, 10 °C/min
- Detector: FID 260 °C

Peaks:
1. 1,4-Butanediol
2. Diethylene glycol
3. Glycerol

PERMABOND® CW 20 M-DEG for determination of diethylene glycol · USP G16

- **Key features**
 - Polyethylene glycol 20 000 (diethylene glycol tested)

- **Recommended application**
 - Determination of diethylene glycol (DEG), e.g., for the quality control of wine

- **Temperature**
 - T_{max} 220 °C (long-term temperature), T_{max} 240 °C (short-term max. temperature in a temperature program)

Ordering information

PERMABOND® CW 20 M-DEG

<table>
<thead>
<tr>
<th>Length →</th>
<th>25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723063.25</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723327.25</td>
</tr>
</tbody>
</table>

Further applications can be found online in our application database at www.mn-net.com/apps
Fused silica capillaries

Untreated capillaries

☑️ Recommended application
- Capillary electrophoresis
- Preparation of capillary columns
- Capillary LC applications

Ordering information
Untreated capillaries

<table>
<thead>
<tr>
<th>Length</th>
<th>1 m</th>
<th>10 m</th>
<th>25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaries for electrophoresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025 mm ID (0.4 mm OD)</td>
<td>723793.1</td>
<td>723793.2</td>
<td>723793.2</td>
</tr>
<tr>
<td>0.05 mm ID (0.4 mm OD)</td>
<td>723790.1</td>
<td>723790.2</td>
<td>723790.2</td>
</tr>
<tr>
<td>0.075 mm ID (0.4 mm OD)</td>
<td>723791.1</td>
<td>723791.2</td>
<td>723791.2</td>
</tr>
<tr>
<td>0.10 mm ID (0.4 mm OD)</td>
<td>723792.1</td>
<td>723792.2</td>
<td>723792.2</td>
</tr>
</tbody>
</table>

Untreated capillaries
<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20 mm ID (0.4 mm OD)</td>
<td>723148.10</td>
<td>723148.25</td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723101.10</td>
<td>723101.25</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723151.10</td>
<td>723151.25</td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723501.10</td>
<td>723501.25</td>
</tr>
</tbody>
</table>

Untreated capillaries are supplied without cage.

Deactivated capillary columns precolumns / guard columns

☑️ Recommended application
- As precolumns / guard columns, whenever a larger contamination capacity is required
- Preparation of capillary columns

Ordering information
Deactivated capillary columns

<table>
<thead>
<tr>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl-Sil deactivated (T<sub>max</sub> 320 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723106.10</td>
<td>723106.25</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723346.10</td>
<td>723346.25</td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723558.10</td>
<td>723558.25</td>
</tr>
<tr>
<td>Phenyl-Sil deactivated (T<sub>max</sub> 320 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723108.10</td>
<td>723108.25</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723348.10</td>
<td>723348.25</td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723560.10</td>
<td>723560.25</td>
</tr>
<tr>
<td>CW deactivated (T<sub>max</sub> 250 °C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723105.10</td>
<td>723105.25</td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723349.10</td>
<td>723349.25</td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723562.10</td>
<td>723562.25</td>
</tr>
</tbody>
</table>

Untreated capillaries are supplied without cage.

For a considerably longer lifetime, even for contaminated or matrix-containing samples, MN offers the option of integrated precolumns. All capillary columns are available with a 10 m guard column with matched deactivation. For ordering, please add V1 at the end of the REF number. Guard column combinations with other lengths, IDs or different deactivation are available on request.
Fused silica capillaries

Retention gaps

Key features
- The retention gap technique in combination with on-column injection allows to concentrate a large sample volume in the capillary column.
- Choice of the retention gap depends on the solvent used: the flooded zone after injection should be between 20–30 cm/μL.
- Me-Sil retention gap: only for use with n-hexane and diethyl ether
- Phe-Sil retention gap: for all solvents except methanol and water
- CW retention gap: for all solvents and especially for methanol and water

Temperature
- T_{max} 250 °C (CW retention gaps),
- T_{max} 320 °C (Me-Sil and Phe-Sil retention gaps)

Note:
- Calculation example: length of flooded zone ~ 20–30 cm/μL, retention gap 10 m x 0.32 mm ID, capillary column: 25 m x 0.32 mm ID, max. injection volume ~ 30–50 μL
- A retention gap must be inert without any noticeable retention: Me-Sil retention gaps are more inert than Phe-Sil, while Phe-Sil is less susceptible to contamination
- Retention gaps can also be used as transfer lines or precolumns (contamination capacity about 5–10 μg).

Ordering information

<table>
<thead>
<tr>
<th>Retention gaps</th>
<th>Length</th>
<th>10 m</th>
<th>25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me-Sil retention gaps (T_{max} 320 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723706.10</td>
<td>723706.25</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723707.10</td>
<td>723707.25</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723708.10</td>
<td>723708.25</td>
<td></td>
</tr>
<tr>
<td>Phe-Sil retention gaps (T_{max} 320 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723709.10</td>
<td>723709.25</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723710.10</td>
<td>723710.25</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723711.10</td>
<td>723711.25</td>
<td></td>
</tr>
<tr>
<td>CW retention gaps (T_{max} 250 °C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 mm ID (0.4 mm OD)</td>
<td>723712.10</td>
<td>723712.25</td>
<td></td>
</tr>
<tr>
<td>0.32 mm ID (0.5 mm OD)</td>
<td>723713.10</td>
<td>723713.25</td>
<td></td>
</tr>
<tr>
<td>0.53 mm ID (0.8 mm OD)</td>
<td>723714.10</td>
<td>723714.25</td>
<td></td>
</tr>
</tbody>
</table>

Retention gaps are supplied without cage.

For a considerably longer lifetime, even for contaminated or matrix-containing samples, MN offers the option of integrated precolumns. All capillary columns are available with a 10 m guard column with matched deactivation. For ordering, please add V1 at the end of the REF number. Guard column combinations with other lengths, IDs or different deactivation are available on request.
Reagents / methods for derivatization

Derivatization reagents

Key features

- Derivatization reagents:
 - To improve volatility, increase thermal stability or to achieve a lower limit of detection in gas chromatography.
 - Prerequisite: quantitative, rapid and reproducible formation of only one derivative.
 - Halogen atoms inserted by derivatization, e.g., trifluoroacetates, allow the specific detection in an ECD with the advantage of high sensitivity.
 - Specific derivatizations may influence elution orders and fragmentation patterns in a MS.
 - We provide reagents for:
 - acylation
 - alkylation (methylation)
 - silylation
 - For 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.

Ordering information

Derivatization method development kits

<table>
<thead>
<tr>
<th>Designation</th>
<th>Contents of the kit</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylation kit</td>
<td>Which is the proper reagent for acylation? 2 x 1 mL each of MBTFA, TFAA, MBHFBA</td>
<td>701950</td>
</tr>
<tr>
<td>Alkylation kit</td>
<td>Which is the proper reagent for methylation? 3 x 1 mL each of TMSH, DMF-DMA</td>
<td>701951</td>
</tr>
<tr>
<td>Silylation kit</td>
<td>Which is the proper reagent for silylation? 2 x 1 mL each of MSTFA, BSTFA, TSIM, MSHFBA</td>
<td>701953</td>
</tr>
</tbody>
</table>

* These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

Selection guide for derivatization of important functional groups in GC

<table>
<thead>
<tr>
<th>Function</th>
<th>Method</th>
<th>Derivative</th>
<th>Recommended reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcohols, phenols</td>
<td>silylation</td>
<td>R'–O – TMS</td>
<td>BSA, MSTFA, MSHFBA, TSIM, SILYL-2110, SILYL-21, SILYL-1139</td>
</tr>
<tr>
<td>R'OH</td>
<td>acylation</td>
<td>R'–O – CO–R</td>
<td>TFAA, HFBA, MBTFA, MSHFBA</td>
</tr>
<tr>
<td>sterically hindered</td>
<td>alkylation</td>
<td>R'–O – TMS</td>
<td>TMSH</td>
</tr>
<tr>
<td>amines</td>
<td>silylation</td>
<td>R'–NR''–TMS</td>
<td>BSA, MSTFA, MSHFBA, SILYL-991</td>
</tr>
<tr>
<td>primary, secondary</td>
<td>acylation</td>
<td>R'–NR''–CO–R</td>
<td>TFHA, HBFA, MBTFA, MSHFBA</td>
</tr>
<tr>
<td>hydrochlorides</td>
<td>silylation</td>
<td>R'–NR''–TMS</td>
<td>MSTFA</td>
</tr>
<tr>
<td>amides</td>
<td>silylation</td>
<td>not stable</td>
<td>TFAA, HBFA, MSHFBA</td>
</tr>
<tr>
<td>acylation</td>
<td>R'–CO–NH–CO–R</td>
<td>TFAA, HBFA, MSHFBA</td>
<td></td>
</tr>
<tr>
<td>amino acids</td>
<td>silylation</td>
<td>R'–CH(NH–TMS)–CO–O–TMS</td>
<td>BSA, BSTFA, MSTFA, MSHFBA</td>
</tr>
<tr>
<td>acylation (a)</td>
<td>R'–CH(NH–CO–R)–CO–O–R</td>
<td>a) MeOH/TMCS, TMSH</td>
<td></td>
</tr>
<tr>
<td>(fatty acids)</td>
<td>silylation</td>
<td>susceptible to hydrolysis</td>
<td>b) TFAA, HBFA, MSHFBA</td>
</tr>
<tr>
<td>Carboxylic acids</td>
<td>acylation</td>
<td>R'–CO–O–TMS</td>
<td>BSA, MSHFBA, TMCS, TSIM, SILYL-2110, SILYL-21, SILYL-1139</td>
</tr>
<tr>
<td>salts</td>
<td>silylation</td>
<td>susceptible to hydrolysis</td>
<td>DMF-DMA, MeOH/TMCS (1 M), TMSH</td>
</tr>
<tr>
<td>carbohydrates</td>
<td>silylation</td>
<td>R'–CO–O–TMS</td>
<td>TMCS</td>
</tr>
<tr>
<td>acylation</td>
<td>susceptible to hydrolysis</td>
<td>TFAA, BSTFA, MSHFBA, TSIM, SILYL-1139</td>
<td></td>
</tr>
<tr>
<td>steroids</td>
<td>silylation</td>
<td>not stable</td>
<td>TFAA, MBTFA</td>
</tr>
<tr>
<td>acylation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

Due to their purpose, derivatization reagents are very reactive substances. For this reason, they should be stored cool and protected from moisture. For easy access with a syringe, our derivatization reagents are supplied in vials with crimp caps (exception DMCS and TMCS with screw closure). Vials with pierced sealing disks have limited stability and should be used soon.

The derivatization procedures can be found on page 367.
Reagents / methods for derivatization

General reaction mechanisms

Silylation

\[
\text{Analyte} - X - H + \text{Si} \rightleftharpoons \text{Analyte} - X - \text{Si} - \text{CH}_3 + \text{HY}
\]

\(X = \text{e.g., O, S, COO, etc.}\)
\(Y = \text{rest of silylation reagents}\)

Acylation

\[
\text{Analyte} - X - H + \text{Y} \rightleftharpoons \text{Analyte} - X - \text{O} - \text{HY}
\]

\(X = \text{e.g., O, S, NH, etc.}\)
\(Y = \text{rest of acylation reagents}\)

Alkylation (Methylation) · example TMSH

\[
\text{Analyte} - X - H + \left[\text{TMSH}\right] \rightarrow \text{Analyte} - X - \text{CH}_3 + \text{HY} + \text{H}_2\text{O}
\]

\(X = \text{e.g., O, S, COO, etc.}\)

MACHEREY-NAGEL

derivatization reagents for GC

Content of brochure

- Product range for acylation, alkylation and silylation reagents
- Protocols for derivatization
- Diverse tips and hints

Ordner now your derivatization brochure KATEN200144
Reagents / methods for acylation

Acylation reagents

Acyl halides

Key features

- By-product of acylation with acyl halides: corresponding hydrohalic acids excess of reagent and acid have to be removed or trapped by a suitable base (e.g., pyridine)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Formula</th>
<th>Molecular Mass</th>
<th>Boiling Point</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentafluorobenzoyl chloride</td>
<td>(\text{C}_5\text{F}_5\text{– CO – Cl})</td>
<td>230.52 g/mol</td>
<td>158–159 °C (760 mm Hg)</td>
<td>d(_{20^\circ/4^\circ}) = 1.601</td>
</tr>
</tbody>
</table>

Anhydrides

Key features

- By-products of acylation with anhydrides: corresponding acids excess reagent and the acid formed are to be removed

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Formula</th>
<th>Molecular Mass</th>
<th>Boiling Point</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifluoroacetic acid anhydride</td>
<td>(\text{CF}_3\text{– CO – O – CO – CF}_3)</td>
<td>210.04 g/mol</td>
<td>39.5–40.5 °C (760 mm Hg),</td>
<td>d(_{20^\circ/4^\circ}) = 1.490</td>
</tr>
<tr>
<td>Heptfluorobutyrlic acid anhydride</td>
<td>(\text{C}_7\text{F}_7\text{– CO – O – CO – C}_3\text{F}_7)</td>
<td>410.06 g/mol</td>
<td>106–107 °C (760 mm Hg),</td>
<td>d(_{20^\circ/4^\circ}) = 1.665</td>
</tr>
</tbody>
</table>

Bisacylamides

Key features

- By-products: corresponding neutral acylamides: high volatility
- Easily removed; due to the neutral conditions and their favorable chromatographic characteristics, the removal of surplus bisacylamides and their by-products is often not necessary. Therefore, the sample preparation is much easier.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Formula</th>
<th>Molecular Mass</th>
<th>Boiling Point</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-methyl-bis(trifluoroacetamide)</td>
<td>(\text{N–CH}_3\text{– CO – N(CH}_3\text{) – CO – CF}_3)</td>
<td>223.08 g/mol</td>
<td>123–124 °C (760 mm Hg),</td>
<td>d(_{20^\circ/4^\circ}) = 1.55</td>
</tr>
<tr>
<td>N-methyl-bis(heptfluorobutryramide)</td>
<td>(\text{N–CH}_3\text{– CO – N(CH}_3\text{) – CO – C}_3\text{F}_7)</td>
<td>423.1 g/mol</td>
<td>165–166 °C (760 mm Hg),</td>
<td>d(_{20^\circ/4^\circ}) = 1.673</td>
</tr>
</tbody>
</table>
Reagents / methods for acylation

Methods for acylation

Acylation with fluorinated acid anhydrides (TFAA, HFBA)

- Applicable for alcohols, phenols, carboxylic acids, amines, amino acids and steroids, stable derivatives for FID or ECD detection
- Procedure see page 367 or online at www.mn-net.com/apps
 TFAA: MN Appl. Nr. 213041
 HFBA: MN Appl. Nr. 213042

Acylation with fluorinated acid amides (MBTFA, MBHFBA)

- Recommended for alcohols, primary and secondary amines as well as for thiols under mild, neutral conditions
- MBTFA also forms very volatile derivatives with carbohydrates [17].
- Procedure see page 367 or online at www.mn-net.com/apps
 MBTFA: MN Appl. Nr. 213051
 MBHFBA: MN Appl. Nr. 21305

Ordering information

<table>
<thead>
<tr>
<th>Acylation reagents*</th>
<th>Substance</th>
<th>Packing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 x 1 mL</td>
<td>20 x 1 mL</td>
</tr>
<tr>
<td>HFBA</td>
<td>701110.201</td>
<td>701110.110</td>
</tr>
<tr>
<td>MBTFA</td>
<td>701410.201</td>
<td>701410.110</td>
</tr>
<tr>
<td>MBHFBA</td>
<td>701420.101</td>
<td>701420.201</td>
</tr>
<tr>
<td>PFBC</td>
<td>701120.101</td>
<td></td>
</tr>
<tr>
<td>TFAA</td>
<td>701130.110</td>
<td>701130.510</td>
</tr>
</tbody>
</table>

* These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.
On request for 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.
Reagents / methods for alkylation / methylation

Alkylation / methylation reagents

DMF-DMA

\[
\text{H}_2\text{C}=\text{CH}_3 \\
\text{H}_2\text{C}^\text{N} \bigg\overset{\text{O}}{\text{O}} \text{CH}_3
\]

- M 119.17 g/mol,
- Kp 106–107 °C (760 mm Hg),
- Density \(d_{20^\circ C}^4\) = 0.897

TMSH

\[
\left[\text{H}_3\text{C}^\text{S}^\text{O} \bigg\overset{\text{O}}{\text{H}} \right] \bigg\overset{\circ}{\text{CH}_3}
\]

- M 94.06 g/mol

Methods for alkylation / methylation

Methylation with TMSH

- Suited for free acids, chlorophenoxy-carboxylic acids, their salts and derivatives as well as for phenols and chlorophenols [18]
- The great advantage is the simplification of the sample preparation. Lipids or triglycerides can be converted to the corresponding fatty acid methyl esters (FAMES) by simple transesterification.
- This reaction is very elegant and convenient, because it is only necessary to add the reagent (0.2 mol/L in methanol) to the sample solution. Removal of surplus reagent is not required, since at 250 °C inside the injector of the gas chromatograph, TMSH will pyrolyze solely to volatile methanol and dimethylsulfoxide. Due to high reactivity, a complete conversion is usually obtained at ambient temperature. Heating (e.g., 10 min at 100 °C) in a closed sample vial may be necessary, however.
- Procedure see page 367 or online at www.mn-net.com/apps MN Appl. Nr. 213070

Methylation with DMF-DMA

- Applicable for fatty acids, primary amines and (partially) amino acids, under formation of \(N\)-dimethyl-aminomethylene amino acid methyl esters [19]
- Since DMF-DMA is a poor solvent, it is essential to use a mixture of DMF-DMA with pyridine, THF, acetone (barbiturates) or another solvent.
- Procedure see page 367 or online at www.mn-net.com/apps MN Appl. Nr. 213080

Methylation with methanol – TMCS (1 M)

- Suited for the esterification of free carboxylic acids and the transesterification of glycerides. Formation of HCl catalyzes the reaction. TMCS, resp. silyl ethers remove the water and thus drive the reaction to completion. The mixture should be freshly prepared.
- Procedure see page 367 or online at www.mn-net.com/apps MN Appl. Nr. 213080

For GC separation of FAMEs from natural butter fat after derivatization with TMSH see Appl. 201680 at www.mn-net.com/apps

Ordering information

<table>
<thead>
<tr>
<th>Alkylation reagents*</th>
<th>10 x 1 mL</th>
<th>20 x 1 mL</th>
<th>1 x 10 mL</th>
<th>5 x 10 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMF-DMA</td>
<td>701430.201</td>
<td>701430.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMSH</td>
<td>701520.101</td>
<td>701520.201</td>
<td>701520.110</td>
<td>701520.510</td>
</tr>
</tbody>
</table>

* These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

On request for 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.
Silylation reagents

The most common form of silylation in GC is the replacing of active hydrogen atoms with a trimethylsilyl group (TMS derivative). Less frequently, trialkylsilyl groups or dimethylsilyl groups with longer alkyl chains are also in use. The alkylsilyl group increases volatility and enhances thermal stability of the sample.

Silylation can be catalyzed either acidic by addition of TMCS or basic by addition of pyridine or TSIM (e.g., for sterically hindered functionalities like tert. alcohols).

Reactivity of silylation reagents (acc. to M. Donike):
- TMS amide (e.g., BSA, MSTFA) > TMS amine = TSIM > Enol-O-TMS ether > S-TMS ether > O-TMS ether > TMS-O-TMS

Stability of the TMS derivatives:
- O-TMS ether > S-TMS ether > Enol-O-TMS ether > TMS amine > TMS amide

BSA N,O-bis-trimethylsilyl-acetamide

![BSA Structure](image)

- **M 203.4 g/mol, Bp 71–73 °C (35 mm Hg), Density d20°/4° = 0.832**

Key features
- Strong silylation reagent
- Not recommended for use with carbohydrates or very low molecular weight compounds
- Good solvent for polar compounds, but frequently used in combination with a solvent (pyridine, DMF etc.) or with other silylation reagents. Dissolved in DMF, BSA is the prime derivatization reagent for phenols.

Recommended application
- Alcohols, amines, carboxylic acids, phenols, steroids, biogenic amines and alkaloids are derivatized to stable TMS derivatives

BSTFA N,O-bis-trimethylsilyl-trifluoroacetamide

![BSTFA Structure](image)

- **M 257.4 g/mol, Bp 40 °C (12 mm Hg), Density d20°/4° = 0.961**

Key features
- Powerful trimethylsilyl donor with approx. the same donor strength as the nonfluorinated analog BSA
- Advantage of BSTFA over BSA: greater volatility of its reaction products, particularly useful for GC analysis of low boiling TMS amino acids
- BSTFA is nonpolar (less polar than MSTFA) and can be mixed with acetonitrile for improved solubility. For the silylation of fatty acid amides, hindered hydroxyl groups and other difficult to silylate compounds, e.g., secondary alcohols and amines, we recommend BSTFA + 1 % trimethylchlo-rosilane (TMCS), available under the designation SILYL-991 (see page 366).

Silylation with BSA, BSTFA or SILYL-991 (BSTFA + 1 % TMCS)

- Procedure see page 367 or online at www.mn-net.com/apps
 - BSA MN Appl. Nr. 213091
 - BSTFA MN Appl. Nr. 213092
 - SILYL-991 MN Appl. Nr. 213093

Silylation with BSA in combination with other silylation reagents

- Procedure see page 367 or online at www.mn-net.com/apps
 - MN Appl. Nr. 213100
Reagents / methods for silylation

Ordering information

<table>
<thead>
<tr>
<th>Substance</th>
<th>Packing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 x 1 mL</td>
</tr>
<tr>
<td>BSA</td>
<td>701210.110</td>
</tr>
<tr>
<td>BSTFA</td>
<td>701220.201</td>
</tr>
<tr>
<td>SILYL-991 – (BSTFA – TMCS (99:1))</td>
<td>701490.201</td>
</tr>
</tbody>
</table>

* These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS. On request for 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.

MSTFA N-methyl-N-trimethylsilyl-trifluoroacetamide

\[
\begin{array}{c}
F_3C\text{-}CO\text{-}N\text{-}Si(CH_3)_3 \\
\text{M 199.1 g/mol,} \\
\text{Bp 70 °C (75 mm Hg),} \\
\text{Density d20°/4° = 1.11}
\end{array}
\]

Key features
- The most volatile trimethylsilyl amide available, very strong TMS donor which does not cause noticeable FID fouling even during long-time measuring series
- The addition of protic solvents in submolar quantities, e.g., TFA for extremely polar compounds (hydrochlorides) or pyridine for carbohydrates, can improve the already good dissolving power of MSTFA.
- Advantages: complete conversion with high reaction rates, even without a catalyst (1–2 % TMCS or TSIM); the by-product of the reaction (N-methyltrifluoroacetamide) shows a high volatility and a short retention time

Recommended application
- Carboxylic acids, hydroxy and ketocarboxylic acids, amino acids, alcohols, polyalcohols, sugars, mercaptans and similar compounds with active hydrogen atoms. Even amine hydrochlorides can be silylated directly.
- Fast reactions (typically 5–20 min) with high yields (> 96 %), by-products are neutral volatiles

MSHFBA N-methyl-N-trimethylsilyl-heptaluorobutyramide

\[
\begin{array}{c}
F_7C\text{-}CO\text{-}N\text{-}Si(CH_3)_3 \\
\text{M 299.1 g/mol,} \\
\text{Bp 148 °C (760 mm Hg)}
\end{array}
\]

Key features
- Similar to MSTFA in reactivity and chromatography
- Either applied alone or in combination with a catalyst (TMCS, TSIM) or another silylation reagent with or without solvent; the by-product N-methylheptfluorobutyric amide has a lower retention time than the silylating reagent
- Especially useful for flame ionization detection due to the large ratio of fluorine to silicon of 7:1, since degradation of the surplus MSHFBA does not produce SiO₂ but volatile, non-corrosive silicon compounds

Recommended application
- Carboxylic acids, alcohols, phenols, primary and secondary amines and amino acids

MBDSTFA N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide

\[
\begin{array}{c}
F_3C\text{-}CO\text{-}N\text{-}Si(CH_3)_2\text{-}C(CH_3)_3 \\
\text{M 241.3 g/mol,} \\
\text{Bp 170 °C (760 mm Hg),} \\
\text{Density d20°/4° = 1.121}
\end{array}
\]

Key features
- Silylation reagent that donates a tert-butyldimethylsilyl group (TBDMs) for derivatizing active hydrogen atoms in hydroxyl, carboxyl and thiol groups as well as primary and secondary amines
- Fast reactions (typically 5–20 min) with high yields (> 96 %), by-products are neutral volatiles
- TBDMS ethers are 10⁴ times more stable than the corresponding TMS ethers
- Due to the large protecting group, chromatographic retention times are longer. This may have a beneficial impact on some separations. The high concentration of M⁺-57 ions is an interesting topic for GC/MS.
Reagents / methods for silylation

Silylation with MSTFA, MSHFBA or MBDSTFA

- Procedure see page 367 or online at www.mn-net.com/apps
- MSTFA MN Appl. Nr. 213111 - MSHFBA MN Appl. Nr. 213112 - MBDSTFA MN Appl. Nr. 213113

<table>
<thead>
<tr>
<th>Substance</th>
<th>10 x 1 mL</th>
<th>20 x 1 mL</th>
<th>1 x 10 mL</th>
<th>5 x 10 mL</th>
<th>1 x 100 mL</th>
<th>6 x 50 mL</th>
<th>6 x 100 mL</th>
<th>12 x 100 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTFA</td>
<td>701270.201</td>
<td>701270.110</td>
<td>701270.510</td>
<td>701270.1100</td>
<td>701270.650</td>
<td>701270.6100</td>
<td>701270.12100</td>
<td></td>
</tr>
<tr>
<td>MSHFBA</td>
<td>701260.201</td>
<td>701260.110</td>
<td>701260.510</td>
<td>701260.1100</td>
<td>701260.6100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBDSTFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

On request for 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.

Ultrapure derivatization reagents for acylation, alkylation and silylation.
Reagents / methods for silylation

DMCS Dimethyldichlorosilane

- **Molecular formula**: \(\ce{H3C-Si-Cl} \)
- **Molecular weight**: 129.06 g/mol
- **Boiling point**: 70 °C (760 mm Hg)
- **Density**: \(\text{d}_{20^\circ/4^\circ} = 1.07 \)

Key features
- Used to form dimethylsilyl (DMS) derivatives
- DMS derivatives are much more susceptible to hydrolysis than TMS derivatives, it is therefore vital to have strictly anhydrous conditions during the conversion.

HMDS Hexamethyldisilazane

- **Molecular formula**: \(\ce{H3C-Si-N=Si-Si-CH3} \)
- **Molecular weight**: 161.4 g/mol
- **Boiling point**: 126 °C (760 mm Hg)
- **Density**: \(\text{d}_{20^\circ/4^\circ} = 0.7742 \)

Key features
- Weak TMS donor; used as a sole reagent, it is slow and not very effective.
- Aprotic solvents like acetonitrile, pyridine, dimethylformamide, carbon disulfide and dimethylacetamide recommend themselves for use with HMDS.
- With catalytic quantities, e.g., 1 % of, or as a mixture with TMCS (2:1, v/v; SILYL-21 and SILYL-2110) it is perfectly suited for a quick and quantitative trimethylsilylation of organic compounds.

TMCS Trimethylchlorosilane

- **Molecular formula**: \(\ce{H3C-Si-CH3} \)
- **Molecular weight**: 108.7 g/mol
- **Boiling point**: 57 °C (760 mm Hg)
- **Density**: \(\text{d}_{20^\circ/4^\circ} = 0.8580 \)

Key features
- Often used as a catalyst with other trimethylsilyl reagents
- As a sole reagent, it can be used to prepare TMS derivatives of organic acids.

TSIM N-trimethylsilyl-imidazole

- **Molecular formula**: \(\ce{H3C-Si-N=Si-Si-CH3} \)
- **Molecular weight**: 140.3 g/mol
- **Boiling point**: 94–96 °C (760 mm Hg)
- **Density**: \(\text{d}_{20^\circ/4^\circ} = 0.961 \)

Key features
- Strongest hydroxyl silylator
- It is remarkable that TSIM reacts quickly and smooth with hydroxyl (even tert. OH) and carboxyl groups, but not with amines. Hence it is especially suited for multiple derivatizations, when compounds with various functional groups are to be derivatized in different ways (e.g., -O-TMS, -N-HFB derivatives of catecholamines).

Recommended application
- Alcohols, phenols, organic acids, steroids, hormones, glycols, nucleotides, narcotics
- Reagent of choice for carbohydrates and most steroids (even strongly hindered steroids)

Silylation with TSIM or SILYL-1139 (TSIM – pyridine 11:39)

- Procedure see page 367 or online at www.mn-net.com/apps
- TSIM: MN Appl. Nr. 213121
- SILYL-1139: MN Appl. Nr. 213122
Reagents / methods for silylation

Ordering information

Silylation reagents*

<table>
<thead>
<tr>
<th>Substance</th>
<th>Packing unit</th>
<th>20 x 1 mL</th>
<th>1 x 10 mL</th>
<th>5 x 10 mL</th>
<th>6 x 50 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

On request for 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.

Reagent mixtures for silylation*

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Composition</th>
<th>Packing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILYL-271</td>
<td>BSA - HMDS - TSIM (2:7:1)</td>
<td>701450.201 701450.110 701450.510</td>
</tr>
<tr>
<td>SILYL-1139</td>
<td>TSIM - Pyridine (11:39)</td>
<td>701460.201</td>
</tr>
<tr>
<td>SILYL-21</td>
<td>HMDS - TMCS (2:1)</td>
<td>701470.201</td>
</tr>
<tr>
<td>SILYL-2110</td>
<td>HMDS - TMCS - Pyridine (2:1:10)</td>
<td>701480.201</td>
</tr>
<tr>
<td>SILYL-991</td>
<td>BSTFA - TMCS (99:1)</td>
<td>701490.201 701490.150 701490.1100</td>
</tr>
</tbody>
</table>

*These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

On request for 1 x 10 mL, 1 x 50 mL and 6 x 50 mL also available with screw closure.

Due to their purpose, derivatization reagents are very reactive substances. For this reason, they should be stored cool and protected from moisture. For easy access with a syringe, our derivatization reagents are supplied in vials with crimp caps (exception DMCS and TMCS with screw closure). Vials with pierced sealing disks have limited stability and should be used soon.

Silylation with SILYL-21 or SILYL-2110

- Recommended applications: sugars, glycols, sterically unhindered alcohols, carboxylic acids, acids in urine, hydroxy fatty acids, nucleotides, steroids, vitamin D, xanthone derivatives
- Procedure see page 367 or online at www.mn-net.com/apps

O-trimethylsilylation with MSTFA followed by N-trifluoroacetylation with MBTF

- Procedure see page 367 or online at www.mn-net.com/apps

SILYL-21 MN Appl. Nr. 213131
SILYL-2110 MN Appl. Nr. 213132
MSTFA / MBTFA MN Appl. Nr. 213140
Derivatization procedures

Acylation

with fluorinated acid anhydrides · TFAA MN Appl. No. 213041 · HFBA MN Appl. No. 213042
Dissolve 0.1 to 1 mg sample in 0.1 mL solvent, add 0.1 mL of the anhydride and heat to 60–70 °C for 1–2 h. If the sample needs not be concentrated prior to the analysis and if there is no risk of catalytically induced side reactions, pyridine is used as solvent. The reaction solution can be injected directly into the gas chromatograph. Otherwise, use a volatile solvent and evaporate solvent, excess reagent and free acid in a stream of nitrogen. Dissolve residue in 50 μL hexane, chloroform etc. and inject aliquot portions.

with fluorinated acid amides · MBTFA MN Appl. No. 213051 · MBHFBA MN Appl. No. 213052
Add 0.5 mL MBTFA or MBHFBA to about 2 mg sample. If there is no reaction at ambient temperature, heat the reaction mixture to 120 °C. Compounds difficult to dissolve, can be trifluoroacetylated in suitable solvent mixtures. It is recommended to use a ratio of solvent to MBTFA or MBHFBA of 4:1. The reaction mixture is chromatographed directly.

Alkylation (Methylation)

with TMSH · MN Appl. No. 213060
Dissolve 100 mg sample (e.g., butter) in 5 mL of a solvent (e.g., tert.-butyl methyl ether). Add 50 μL reagent to 100 μL of this solution. The mixture is injected directly. The temperature of the injector must be at least 250 °C.

with DMF-DMA · MN Appl. No. 213070
Add 1 mL of a mixture of DMF-DMA and pyridine (1:1) to 1–50 mg fatty acids. The sample can be injected as soon as a clear solution has formed. It is recommended, however, to heat the solution to 60–100 °C for 10–15 min.

with methanol – TMCS · MN Appl. No. 213080
Add 1 mL methanol – TMCS to about 50 mg carboxylic acid or glyceride and heat. Then evaporate in a stream of nitrogen and dissolve again for injection in, e.g., n-heptane.

Silylation

with BSA, BSTFA oder SILYL-991 (BSTFA + 1 % TMCS) · BSA MN Appl. No. 213091 · BSTFA MN Appl. No. 213092 · SILYL-991 MN Appl. No. 213093
Add 0.5 mL of the silylation reagent to 1–10 mg sample; if necessary, add some solvent (normally pyridine or DMF [dimethylformamide]). Heat to 60–80 °C for 20 min to increase the reaction rate. 1–2 drops of TMCS (trimethylchlorosilane) or TSIM will also speed up the reaction.

with BSA in combination with other silylation reagents · MN Appl. No. 213100
BSA alone silylates all sterically unhindered hydroxyl groups of the steroid skeleton; addition of TMCS will enable reaction of moderately hindered OH groups (reaction time 3–6 h at 60 °C). After addition of TSIM even strongly hindered hydroxyl groups will react (reaction time 6–24 h at 60 °C).

with MSTFA, MSHFBA oder MBDSTFA · MSTFA MN Appl. No. 213111 · MSHFBA MN Appl. No. 213112 · MBDSTFA MN Appl. No. 213113
Dissolve 10–15 mg sample in 0.8 mL solvent, then add 0.2 mL of the silylation reagent. The reaction mixture can be heated to 60–70 °C for up to 1 h and can be analyzed directly. If TFA is used as a solvent, proceed as follows [20]: dissolve 1–2 mg sample in 100 μL TFA. Dropwise add 0.9 mL of the silylating reagent. After cooling the sample can be chromatographed directly.

with TSIM oder SILYL-1139 (TSIM – pyridine 11:39) · TSIM MN Appl. No. 213121 · SILYL-1139 MN Appl. No. 213122
Dissolve 10–15 mg sample in 0.8 mL solvent, then add 0.2 mL of the silylation reagent. The reaction mixture can be heated to 60–70 °C for up to 1 hour and can be analyzed directly. Recommended solvent pyridine. When using SILYL-1139, the presence of water does not interfere.

with SILYL-21 oder SILYL-2110 · SILYL-21 MN Appl. No. 213131 · SILYL-2110 MN Appl. No. 213132
Carefully add SILYL-21 or SILYL-2110 to 1–10 mg of the sample. Precipitated ammonium chloride does not interfere. If the sample should not dissolve within 5 min, heat to 75–85 °C. If no mutarotation is to be expected, you may dissolve the sugar in warm pyridine first and then add the silylation reagent. In some cases it may be advantageous to use a different solvent instead of pyridine. For derivatization of 3-ketosteroids we recommend to use DMF [dimethylformamide]

O-trimethylsilylation with MSTFA followed by N-trifluoroacetylation with MBTFA · MN Appl. No. 213140
Completely silylate 2 mg of the sample with 0.3 mL MSTFA, e.g., as described on page 363. After addition of 0.3 mL MBTFA the N-trimethylsilyl group is replaced by the N-trifluoroacetyl group. The mixture can be analyzed directly.
Test mixtures for GC capillary columns

Key features

- Test mixtures for GC capillary columns to control the performance of fused silica capillary columns and the GC system

Ordering information

Test mixtures*

<table>
<thead>
<tr>
<th>Designation</th>
<th>Pack of</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity test mixture (FA-TMS test according to Donike) in MSTFA/n-hexane (1 + 4)</td>
<td>1 mL</td>
<td>Test mixture (FA-TMS test according to Donike) in MSTFA/n-hexane (1 + 4)</td>
</tr>
<tr>
<td>Grob test mixture (modified) in n-hexane</td>
<td>1 mL</td>
<td>Grob test mixture (modified) in n-hexane</td>
</tr>
<tr>
<td>MN OPTIMA® test mixture in pentane</td>
<td>1 mL</td>
<td>MN OPTIMA® test mixture in pentane</td>
</tr>
<tr>
<td>MN OPTIMA® amine test mixture in ethanol</td>
<td>1 mL</td>
<td>MN OPTIMA® amine test mixture in ethanol</td>
</tr>
<tr>
<td>FAME test mixture in hexane</td>
<td>1 mL</td>
<td>FAME test mixture in hexane</td>
</tr>
</tbody>
</table>

* These products contain harmful substances which must be specially labeled as hazardous. For detailed information please see SDS.

Grob test mixture (modified) (REF 722310)

MN Appl. No. 211250

<table>
<thead>
<tr>
<th>Peaks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. n-Decane</td>
</tr>
<tr>
<td>2. 1-Octanol</td>
</tr>
<tr>
<td>3. n-Undecane</td>
</tr>
<tr>
<td>4. 2,6-Dimethylphenol</td>
</tr>
<tr>
<td>5. 2,6-Dimethylaniline</td>
</tr>
<tr>
<td>6. Methyl decanoate</td>
</tr>
<tr>
<td>7. Methyl undecanoate</td>
</tr>
<tr>
<td>8. Dicyclohexylamine</td>
</tr>
<tr>
<td>9. Methyl dodecanoate</td>
</tr>
</tbody>
</table>

Column: OPTIMA® 5, 50 m x 0.25 mm ID, 1.0 μm film
Injection: 1 μL, split 1:40, 280 °C
Carrier gas: 1.5 bar H₂
Temperature: 80 °C → 280 °C (10 min), 8 °C/min
Detector: FID 280 °C
Test mixtures for GC capillary columns

Activity test mixture (REF 722307)
MN Appl. No. 211240

- **Column:** OPTIMA®, 5 m x 0.32 mm ID, 1.0 μm film
- **Injection:** 1 μL, split 1:40, 300 °C
- **Carrier gas:** 0.6 bar H₂
- **Temperature:** 150 °C → 300 °C (8 min), 10 °C/min
- **Detector:** FID 300 °C

Peaks:
1. TMS capric acid (C₁₀)
2. Hexadecane (C₁₆)
3. TMS myristic acid (C₁₄)
4. Eicosane (C₂₀)
5. TMS stearic acid (C₁₈)
6. Tetracosane (C₂₄)
7. TMS behenic acid (C₂₂)
8. Octacosane (C₂₈)

OPTIMA® Amine test mixture (REF 722317)
MN Appl. No. 250020

- **Column:** OPTIMA® 5 Amine, 30 m x 0.32 mm ID, 1.5 μm film
- **Injection:** 1 μL, split 1:40
- **Carrier gas:** 0.6 bar H₂
- **Temperature:** 100 °C → 280 °C, 10 °C/min
- **Detector:** FID 280 °C

Peaks:
1. Diisobutylamine
2. Diethanolamine
3. 2,6-Dimethylaniline
4. o-Propanol-pyridine
5. Dicyclohexylamine
6. Dibenzylamine
Ferrules for capillary columns

Ferrules

Key features

- Graphite ferrules provide the highest temperature stability (up to 450 °C). They are reusable, if handled with care. We also offer 1/16” graphite ferrules specially designed for Carlo Erba / Fisons or for Agilent gas chromatographs.

- Vespel ferrules with 40 % graphite. Temperature-stable up to 400 °C and reusable.

Ordering information

<table>
<thead>
<tr>
<th>Ferrules</th>
<th>Graphite</th>
<th>Vespel +40 % Graphite</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{\text{max}} →</td>
<td>450 °C</td>
<td>400 °C</td>
</tr>
<tr>
<td>1/16” ferrules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 mm</td>
<td></td>
<td>706246</td>
</tr>
<tr>
<td>0.5 mm</td>
<td></td>
<td>708308</td>
</tr>
<tr>
<td>1/16” ferrules for Carlo Erba (Fisons) instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8 mm</td>
<td></td>
<td>708340</td>
</tr>
<tr>
<td>1/16” ferrules for Hewlett-Packard (Agilent) instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 mm</td>
<td></td>
<td>708353</td>
</tr>
<tr>
<td>0.5 mm</td>
<td></td>
<td>708354</td>
</tr>
<tr>
<td>0.8 mm</td>
<td></td>
<td>708355</td>
</tr>
<tr>
<td>1/8” ferrules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no bore</td>
<td></td>
<td>708341</td>
</tr>
<tr>
<td>1/4” ferrules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no bore</td>
<td></td>
<td>708344</td>
</tr>
<tr>
<td>0.4 mm</td>
<td></td>
<td>708345</td>
</tr>
<tr>
<td>0.5 mm</td>
<td></td>
<td>708346</td>
</tr>
</tbody>
</table>
Injection Port Septa blister pack for cleanliness and easily handling

Key features

- **BTO septa**
 - for highest demands in GC and GC-MS
 - pierced, soft – CenterGuide™

- **AG3 septa**
 - with higher durability than BTO
 - pierced, hard – CenterGuide™

- **Marathon Septa**
 - with extreme durability for > 400 injections
 - pierced – CenterGuide™

Ordering information

<table>
<thead>
<tr>
<th>Injection port septa</th>
<th>Septum grade</th>
<th>BTO septa</th>
<th>AG3 septa</th>
<th>Marathon septa</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>T<sub>max</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mm</td>
<td>400 °C</td>
<td>702646</td>
<td>702656</td>
<td>702660</td>
</tr>
<tr>
<td>11 mm</td>
<td>400 °C</td>
<td>702647</td>
<td>702657</td>
<td>702661</td>
</tr>
<tr>
<td>11.5 mm</td>
<td>400 °C</td>
<td>702648</td>
<td>702658</td>
<td>702662</td>
</tr>
<tr>
<td>Shimadzu<sup>®</sup></td>
<td>300 °C</td>
<td>702649</td>
<td>702659</td>
<td>702663</td>
</tr>
<tr>
<td>Pack of</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Standard Septa in classical plastic container

Key features

- **Standard septa (ST)**
 - beige silicone, 60° shore A, 4 mm
- **High temperature septa (HT)**
 - red non-bleeding silicone, 60° shore A, 3 mm (320 °C max.)

- **Silicone septa**
 - soft, transparent
- **Silicone / PTFE septa**
 - white silicone, one side coated with grey PTFE, 3 mm

Ordering information

<table>
<thead>
<tr>
<th>Classical septa</th>
<th>Septum grade</th>
<th>Standard septa (ST)</th>
<th>High temperature septa (HT)</th>
<th>Silicone septa</th>
<th>Silicone septa / PTFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mm</td>
<td></td>
<td>702609</td>
<td>702619</td>
<td>702602</td>
<td></td>
</tr>
<tr>
<td>10 mm</td>
<td></td>
<td>702610</td>
<td>702620</td>
<td>702603</td>
<td>702625</td>
</tr>
<tr>
<td>11 mm</td>
<td></td>
<td>702611</td>
<td>702621</td>
<td>702604</td>
<td>702626</td>
</tr>
<tr>
<td>12 mm</td>
<td></td>
<td>702612</td>
<td>702622</td>
<td>702605</td>
<td>702627</td>
</tr>
<tr>
<td>13 mm</td>
<td></td>
<td>702613</td>
<td>702623</td>
<td>702606</td>
<td>702628</td>
</tr>
<tr>
<td>17 mm</td>
<td></td>
<td></td>
<td></td>
<td>702632</td>
<td></td>
</tr>
<tr>
<td>Pack of</td>
<td></td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
Connectors for capillary GC columns

Key features

- Glass connectors for fused silica capillary columns from 0.2 to 0.53 mm ID: manufactured from deactivated glass with slightly tapered inner diameter; used to join two fused silica capillaries of equal or different diameters. Advantages compared to stainless steel fittings are easy connection without tools, optical control during connection, negligible heat capacity and no dead volume.

- Graphseal ferrules for capillary columns: a stainless steel ferrule filled with graphite – the ideal sealing material for capillaries. The capillary is mounted on a 1/16" exit (detector, injector etc.), with the appropriate ferrule, a nut (with slit) and an adapter (see table below).

Ordering information

<table>
<thead>
<tr>
<th>Connectors for capillary GC columns</th>
<th>Pack of</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphseal ferrules for capillary columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 mm bore</td>
<td>10 ferrules</td>
<td>708337</td>
</tr>
<tr>
<td>0.5 mm bore</td>
<td>10 ferrules</td>
<td>708318</td>
</tr>
<tr>
<td>0.8 mm bore</td>
<td>10 ferrules</td>
<td>708319</td>
</tr>
<tr>
<td>Universal capillary glass connectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear</td>
<td>5 connectors</td>
<td>707971</td>
</tr>
<tr>
<td>linear</td>
<td>10 connectors</td>
<td>707972</td>
</tr>
<tr>
<td>Y splitter</td>
<td>1 connector</td>
<td>707973</td>
</tr>
</tbody>
</table>
Tools and general accessories for GC

Key features

- Magnifying lens with scale: an essential tool for any laboratory. In capillary GC it is often important to inspect column integrity or check cut ends of capillaries. When closing a column by melting the magnifying lens can be used to check whether the column is really closed or whether an open channel has been formed in the sealed end. Our lens provides 8fold magnification and is supplied with a scale as pictured in the figure below. The space between lines is equivalent to 1/10 mm.

- Diamond file: a useful tool for cutting capillaries and smoothing ends of capillaries. Square capillary ends are especially important for butt connections (e.g., in Valco unions).

- Glass wool, quartz wool and glass fiber wadding are used for, e.g., GC liners, packed GC columns etc.

Ordering information

<table>
<thead>
<tr>
<th>Tools and general accessories</th>
<th>Pack of</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools for capillary GC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond file for cutting capillaries and straightening capillary ends</td>
<td>1</td>
<td>708300</td>
</tr>
<tr>
<td>Magnifying lens with scale 8x</td>
<td>1</td>
<td>706296</td>
</tr>
<tr>
<td>PTFE tape for sealing, reels 12 m long, 12 mm wide, 0.1 mm thick</td>
<td>1 reel</td>
<td>706512</td>
</tr>
<tr>
<td>Glass wool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass wool, long fibers, DMCS treated, for packed GC columns</td>
<td>50 g</td>
<td>706201</td>
</tr>
<tr>
<td>Glass fiber wadding silanized, very fine fibers</td>
<td>25 g</td>
<td>718002</td>
</tr>
<tr>
<td>Quartz wool, very fine fibers</td>
<td>25 g</td>
<td>718587</td>
</tr>
</tbody>
</table>